Skip to main content
Log in

Survival mechanisms and culturability of Campylobacter jejuni under stress conditions

  • Review Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Culture-based isolation and enumeration of bacterial human pathogens from environmental and human food samples has significant limitations. Many pathogens enter a viable but non-culturable (VBNC) state in response to stress, and cannot be detected via culturing methods. Favourable growth conditions with a source of energy and an ideal stoichiometric ratio of carbon to inorganic elements can reverse this VBNC state. This review will focus on the bacterium Campylobacter jejuni which is a leading cause of food borne illness in the developed world. C. jejuni can enter a VBNC state in response to extremes in: pH, moisture content, temperature, nutrient content and salinity. Once in a VBNC state, the organism must maintain an energy balance from substrate oxidation through respiration to grow, divide and remain viable. The goal of this review is a greater understanding of how abiotic stress and thermodynamics influence the viability of C. jejuni.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abram DD, Potter NN (1984) Survival of Campylobacter jejuni at different temperatures in broth, beef, chicken and cod supplemented with sodium chloride. J Food Prot 47(10):795–800

    Google Scholar 

  • Allos BM (2001) Campylobacter jejuni Infections: update on emerging issues and trends. Clin Infect Dis 32(8):1201–1206

    Article  CAS  PubMed  Google Scholar 

  • Alter T, Scherer K (2006) Stress response of Campylobacter spp. and its role in food processing. J Vet Med B Infect Dis Vet Public Health 53(8):351–357

    CAS  PubMed  Google Scholar 

  • Baffone W, Casaroli A, Citterio B, Pierfelici L, Campana R, Vittoria E, Guaglianone E, Donelli G (2006) Campylobacter jejuni loss of culturability in aqueous microcosms and ability to resuscitate in a mouse model. Int J Food Microbiol 107(1):83–91

    Article  PubMed  Google Scholar 

  • Baillon ML, van Vliet AH, Ketley JM, Constantinidou C, Penn CW (1999) An iron-regulated alkyl hydroperoxide reductase (AhpC) confers aerotolerance and oxidative stress resistance to the microaerophilic pathogen Campylobacter jejuni. J Bacteriol 181(16):4798–4804

    CAS  PubMed  Google Scholar 

  • Barer MR, Harwood CR (1999) Bacterial viability and culturability. Adv Microb Physiol 41:93–137

    Article  CAS  PubMed  Google Scholar 

  • Bastolla U, Moya A, Viguera E, van-Ham RCHJ (2004) Genomic determinants of protein folding thermodynamics in prokaryotic organisms. J Mol Biol 343:1451–1466

    Article  CAS  PubMed  Google Scholar 

  • Beard DA, Reed JL, Qian H (2002) Energy balance for analysis of complex metabolic networks. Biophys J 83:79–86

    Article  CAS  PubMed  Google Scholar 

  • Beard DA, Babson E, Curtis E, Qian H (2004) Thermodynamic constraints for biochemical networks. J Theor Biol 228:327–333

    Article  CAS  PubMed  Google Scholar 

  • Beery JT, Hugdahl MB, Doyle MP (1988) Colonization of gastrointestinal tracts of chicks by Campylobacter jejuni. Appl Environ Microbiol 54(10):2365–2370

    CAS  PubMed  Google Scholar 

  • Beumer RR, Devries J, Rombouts FM (1992) Campylobacter jejuni nonculturable coccoid cells. Int J Food Microbiol 15(1–2):153–163

    Article  CAS  PubMed  Google Scholar 

  • Blaser MJ, Hardesty HL, Powers B, Wang WL (1980) Survival of Campylobacter fetus subsp. jejuni in biological milieus. J Clin Microbiol 11(4):309–313

    CAS  PubMed  Google Scholar 

  • Bolton FJ, Coates D (1983) A study of the oxygen and carbon dioxide requirements of thermophilic Campylobacters. J Clin Pathol 36(7):829–834

    Article  CAS  PubMed  Google Scholar 

  • Bolton FJ, Hinchliffe PM, Coates D, Robertson L (1982) A most probable number method for estimating small numbers of Campylobacters in water. J Hyg 89(2):185–190

    CAS  Google Scholar 

  • Boucher SN, Slater ER, Chamberlain AH, Adams MR (1994) Production and viability of coccoid forms of Campylobacter jejuni. J Appl Bacteriol 77(3):303–307

    CAS  PubMed  Google Scholar 

  • Bowman C, Flint J, Pollari F (2003) Canadian integrated surveillance report: Salmonella, Campylobacter, pathogenic E. coli and Shigella, from 1996 to 1999. Can Commun Dis Rep 29S(1):1–39

    Google Scholar 

  • Boysen L, Knochel S, Rosenquist H (2007) Survival of Campylobacter jejuni in different gas mixtures. FEMS Microbiol Lett 266(2):152–157

    Article  CAS  PubMed  Google Scholar 

  • Bras AM, Chatterjee S, Wren BW, Newell DG, Ketley JM (1999) A novel Campylobacter jejuni two-component regulatory system important for temperature-dependent growth and colonization. J Bacteriol 181(10):3298–3302

    CAS  PubMed  Google Scholar 

  • Buswell CM, Herlihy YM, Lawrence LM, McGuiggan JT, Marsh PD, Keevil CW, Leach SA (1998) Extended survival and persistence of Campylobacter spp. in water and aquatic biofilms and their detection by immunofluorescent-antibody and -rRNA staining. Appl Environ Microbiol 64(2):733–741

    CAS  PubMed  Google Scholar 

  • Candon HL, Allan BJ, Fraley CD, Gaynor EC (2007) Polyphosphate kinase 1 is a pathogenesis determinant in Campylobacter jejuni. J Bacteriol 189(22):8099–8108

    Article  CAS  PubMed  Google Scholar 

  • Cappelier JM, Lazaro B, Rossero A, Fernandez-Astorga A, Federighi M (1997) Double staining (CTC-DAPI) for detection and enumeration of viable but non-culturable Campylobacter jejuni cells. Vet Res 28(6):547–555

    CAS  PubMed  Google Scholar 

  • Cappelier JM, Magras C, Jouve JL, Federighi M (1999) Recovery of viable but non-culturable Campylobacter jejuni cells in two animal models. Food Microbiol 16(4):375–383

    Article  Google Scholar 

  • Carlon E, Heim T (2006) Thermodynamics of RNA/DNA hybridization in high-density oligonucleotide microarrays. Physica A 362:433–449

    Article  CAS  Google Scholar 

  • Chaveerach P, ter Huurne AAHM, Lipman LJA, van Knapen F (2003) Survival and resuscitation of ten strains of Campylobacter jejuni and Campylobacter coli under acid conditions. Appl Environ Microbiol 69(1):711–714

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Strevett KA (2003) Impact of carbon and nitrogen conditions on E.coli surface thermodynamics. Colloid Surf 28:135–146

    Article  CAS  Google Scholar 

  • Churruca E, Girbau C, Martínez I, Mateo E, Alonso R, Fernandez-Astorga A (2007) Detection of Campylobacter jejuni and Campylobacter coli in chicken meat samples by real-time nucleic acid sequence-based amplification with molecular beacons. Int J Food Microbiol 117(1):85–90

    Article  CAS  PubMed  Google Scholar 

  • Colwell RR, Huq A (1994) Environmental reservoir of Vibrio cholerae. The causative agent of cholera. Ann NY Acad Sci 740:44–54

    Article  CAS  PubMed  Google Scholar 

  • Cools I, Uyttendaele M, Caro C, D’Haese E, Nelis HJ, Debevere J (2003) Survival of Campylobacter jejuni strains of different origin in drinking water. J Appl Microbiol 94(5):886–892

    Article  CAS  PubMed  Google Scholar 

  • Cools I, D’Haese E, Uyttendaele M, Storms E, Nelis HJ, Debevere J (2005) Solid phase cytometry as a tool to detect viable but non-culturable cells of Campylobacter jejuni. J Microbiol Methods 63(2):107–114

    Article  CAS  PubMed  Google Scholar 

  • Doyle MP, Roman DJ (1982) Response of Campylobacter jejuni to sodium chloride. Appl Environ Microbiol 43(3):561–565

    CAS  PubMed  Google Scholar 

  • Farber JM (1991) Microbiological aspects of modified-atmosphere packaging technology: a review. J Food Prot 54(1):58–70

    Google Scholar 

  • Federighi M, Tholozan JL, Cappelier JM, Tissier JP, Jouve JL (1998) Evidence of non-coccoid viable but non-culturable Campylobacter jejuni cells in microcosm water by direct viable count, CTC-DAPI double staining, and scanning electron microscopy. Food Microbial 15(5):539–550

    Article  Google Scholar 

  • Friedman CR, Neimann J, Wegener HC, Tauxe RV (2000) Epidemiology of Campylobacter jejuni in the United States and other industrialized nations. In: Nachamkin I, Blaser MJ (eds) Campylobacter. ASM Press, Washington, pp 121–138

    Google Scholar 

  • Fullerton KE, Ingram LA, Jones TF, Anderson BJ, McCarthy PV, Hurd S, Shiferaw B, Vugia D, Haubert N, Hayes T, Wedel S, Scallan E, Henao O, Angulo FJ (2007) Sporadic Campylobacter infection in infants: a population-based surveillance case–control study. Pediatr Infect Dis J 26(1):19–24

    Article  PubMed  Google Scholar 

  • Garenaux A, Jugiau F, Rama F, de Jonge R, Denis M, Federighi M, Ritz M (2008) Survival of Campylobacter jejuni strains from different origins under oxidative stress conditions: effect of temperature. Curr Microbiol 56(4):293–297

    Article  CAS  PubMed  Google Scholar 

  • Gaynor EC, Cawthraw S, Manning G, MacKichan JK, Falkow S, Newell DG (2004) The genome-sequenced variant of Campylobacter jejuni NCTC 11168 and the original clonal clinical isolate differ markedly in colonization, gene expression, and virulence-associated phenotypes. J Bacteriol 186(2):503–517

    Article  CAS  PubMed  Google Scholar 

  • Gaynor EC, Wells DH, MacKichan JK, Falkow S (2005) The Campylobacter jejuni stringent response controls specific stress survival and virulence-associated phenotypes. Mol Microbiol 56(1):8–27

    Article  CAS  PubMed  Google Scholar 

  • Gilbert C, Hanning I, Vaughn B, Kanta H, Slavik M (2007) Comparison of cytolethal distending toxin and invasion abilities in Campylobacter jejuni isolated from clinical patients and poultry. J Food Safety 29(1):73–82

    Article  Google Scholar 

  • Gould GW (1995) New methods of food preservation. Blackie Academic & Professional, London, p 324

    Google Scholar 

  • Guccione E, Leon-Kempis MDR, Pearson BM, Hitchin E, Mulholland F, van Dieman PM, Stevens MP, Kelly DJ (2008) Amino acid-dependent growth of Campylobacter jejuni: key roles for aspartase (AspA) under microaerobic and oxygen- limited conditions and identification of AspB (Cj0762), essential for growth on glutamate. Mol Microbiol 69(1):77–93

    Article  CAS  PubMed  Google Scholar 

  • Guerry P (2007) Campylobacter flagella: not just for motility. Trends Microbiol 15(10):456–461

    Article  CAS  PubMed  Google Scholar 

  • Guerry P, Szymanski CM (2008) Campylobacter sugars sticking out. Trends Microbiol 16(9):428–435

    Article  CAS  PubMed  Google Scholar 

  • Hanninen ML, Haajanen H, Pummi T, Wermundsen K, Katila ML, Sarkkinen H, Miettinen I, Rautelin H (2003) Detection and typing of Campylobacter jejuni and Campylobacter coli and analysis of indicator organisms in three waterborne outbreaks in Finland. Appl Environ Microbiol 69(3):1391–1396

    Article  CAS  PubMed  Google Scholar 

  • Harvey P, Leach S (1998) Analysis of coccal cell formation by Campylobacter jejuni using continuous culture techniques, and the importance of oxidative stress. J Appl Microbiol 85(2):398–404

    Article  CAS  PubMed  Google Scholar 

  • Hazeleger WC, Janse JD, Koenraad PMFJ, Beumer RR, Rombouts FM, Abee T (1995) Temperature-dependent membrane fatty acid and cell physiology changes in coccoid forms of Campylobacter jejuni. Appl Environ Microbiol 61(7):2713

    CAS  PubMed  Google Scholar 

  • Hazeleger WC, Wouters JA, Rombouts FM, Abee T (1998) Physiological activity of Campylobacter jejuni far below the minimal growth temperature. Appl Environ Microbiol 64(10):3917

    CAS  PubMed  Google Scholar 

  • Henry CS, Broadbelt LJ, Hatzimanikatis V (2007) Thermodynamics-based metabolic flux analysis. Biophys J 92:1792–1805

    Article  CAS  PubMed  Google Scholar 

  • Hofreuter D, Novik V, Galan JE (2008) Metabolic diversity in Campylobacter jejuni enhances specific tissue colonization. Cell Host Microbe 4(5):425–433

    Article  CAS  PubMed  Google Scholar 

  • Holler C, Martin W (1998) Evaluation of the direct viable count method for temperature stressed Campylobacter coli. J Microbiol Methods 33(2):157–162

    Article  Google Scholar 

  • Hughes NJ, Clayton CL, Chalk PA, Kelly DJ (1998) Helicobacter pylori porCDAB and oorDABC genes encode distinct pyruvate:flavodoxin and 2-oxoglutarate:acceptor oxidoreductases which mediate electron transport to NADP. J Bacteriol 180(5):1119–1128

    CAS  PubMed  Google Scholar 

  • Inglis GD, Kalischuk LD (2003) Use of PCR for direct detection of Campylobacter species in bovine feces. Appl Environ Microbiol 69(6):3435–3447

    Article  CAS  PubMed  Google Scholar 

  • Inoue D, Tsutsui H, Yamazaki Y, Sei K, Soda S, Fujita M, Ike M (2008) Application of real-time polymerase chain reaction (PCR) coupled with ethidium monoazide treatment for selective quantification of viable bacteria in aquatic environment. Water Sci Technol 58(5):1107–1112

    Article  CAS  PubMed  Google Scholar 

  • IUPAC (1997) Compendium of chemical terminology, 2nd edn. (the “Gold Book”). Compiled by McNaught AD, Wilkinson A. Blackwell Scientific Publications, Oxford

  • Jones DM, Curry A, Sutcliffe EM (1991a) Ultrastructure of coccal forms of Campylobacter jejuni—are these viable but non-culturable. J Med Microbiol 34(4):VI–VII

    Google Scholar 

  • Jones DM, Sutcliffe EM, Curry A (1991b) Recovery of viable but non-culturable Campylobacter jejuni. J Gen Microbiol 137(10):2477–2482

    CAS  PubMed  Google Scholar 

  • Joshua GWP, Guthrie-Irons C, Karlyshev AV, Wren BW (2006) Biofilm formation in Campylobacter jejuni. Microbiology 152(2):387–396

    Article  CAS  PubMed  Google Scholar 

  • Katzav M, Isohanni P, Lund M, Hakkinen M, Lyhs U (2008) PCR assay for the detection of Campylobacter in marinated and non-marinated poultry products. Food Microbiol 25(7):908–914

    Article  CAS  PubMed  Google Scholar 

  • Kelana LC, Griffiths MW (2003a) Use of an autobioluminescent Campylobacter jejuni to monitor cell survival as a function of temperature, pH, and sodium chloride. J Food Prot 66(11):2032–2037

    PubMed  Google Scholar 

  • Kelana LC, Griffiths MW (2003b) Growth of autobioluminescent Campylobacter jejuni in response to various environmental conditions. J Food Prot 66(11):1190–1197

    PubMed  Google Scholar 

  • Kell DB, Kapreylants AS, Weichart DH, Harwood CL, Barer MR (1998) Viability and activity in readily culturable bacteria: a review and discussion of the practical issues. Ant van Leeuvenhoek 73(2):169–187

    Article  CAS  Google Scholar 

  • Kelly DJ (2001) The physiology and metabolism of Campylobacter jejuni and Helicobacter pylori. J Appl Microbiol 90(S6):16S–24S

    Article  Google Scholar 

  • Kelly AF, Park S, Bovill R, Mackey BM (2001) Survival of Campylobacter jejuni during stationary phase: evidence for the absence of a phenotypic stationary-phase response. Appl Environ Microbiol 67(5):2248–2254

    Article  CAS  PubMed  Google Scholar 

  • Konkel ME, Kim BJ, Klena JB, Young CR, Ziprin R (1998) Characterization of the thermal stress response of Campylobacter jejuni. Infect Immun 66(8):3666

    CAS  PubMed  Google Scholar 

  • Korhonen LK, Martikainen PJ (1991) Comparison of the survival of Campylobacter jejuni and Campylobacter coli in culturable form in surface water. Can J Microbiol 37(7):530–533

    CAS  PubMed  Google Scholar 

  • Larazo B, Carcamo J, Audicana A, Perales I, Fernandez-Astorga A (1999) Viability and DNA maintenance in nonculturable spiral Campylobacter jejuni cells after long-term exposure to low temperatures. Appl Environ Microbiol 65(10):4677–4681

    Google Scholar 

  • Leach S, Harvey P, Wait R (1997) Changes with growth rate in the membrane lipid composition of and amino acid utilization by continuous cultures of Campylobacter jejuni. J Appl Microbiol 82(5):631–640

    CAS  PubMed  Google Scholar 

  • Levin RE (2007) Campylobacter jejuni: a review of its characteristics, pathogenicity, ecology, distribution, subspecies characterization and molecular methods of detection. Food Biotechnol 21(3–4):271–347

    Article  CAS  Google Scholar 

  • Lin S, Wang X, Zheng H, Mao Z, Sun Y, Jiang B (2008) Direct detection of Campylobacter jejuni in human stool samples by real-time PCR. Can J Microbiol 54(9):742–747

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Hanning I, Slavik M (2009) Stress-induced adaptive tolerance response and virulence gene expression in Campylobacter jejuni. J Food Safety 29(1):126–143

    Article  CAS  Google Scholar 

  • Martin JD, Werner BG, Hotchkiss JH (2003) Effects of carbon dioxide on bacterial growth parameters in milk as measured by conductivity. J Dairy Sci 86(6):1932–1940

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Rodriguez A, Kelly AF, Park SF, Mackey BM (2004) Emergence of variants with altered survival properties in stationary phase cultures of Campylobacter jejuni. Int J Food Microbiol 90(3):321–329

    Article  CAS  PubMed  Google Scholar 

  • Mateo E, Carcamo J, Urquijo M, Perales I, Fernandez-Astorga A (2005) Evaluation of a PCR assay for the detection and identification of Campylobacter jejuni and Campylobacter coli in retail poultry products. Res Microbiol 156(4):568–574

    Article  CAS  PubMed  Google Scholar 

  • Mavrovouniotis ML (1991) Estimation of standard Gibbs energy changes of biotransformation. Biol Chem 266(22):14440–14445

    CAS  Google Scholar 

  • McCarty PL (1975) Stoichiometry of biological reactions. Progr Water Technol 7:157–172

    CAS  Google Scholar 

  • Medeiros D, Hofmann L (2002) Isolation of thermophilic campylobacter from food. Report MFLP-46, Health Canada

  • Medema GJ, Schets FM, van de Giessen AW, Havelaar AH (1992) Lack of colonization of 1 day old chicks by viable, non-culturable Campylobacter jejuni. J Appl Bacteriol 72(6):512–516

    CAS  PubMed  Google Scholar 

  • Merino FJ, Agulla A, Villasante PA, Diaz A, Saz JV, Velasco AC (1986) Comparative efficacy of seven selective media for isolating Campylobacter jejuni. J Clin Microbiol 24(3):451–452

    CAS  PubMed  Google Scholar 

  • Mihaljevic RR, Sikic M, Klancnik A, Brumini G, Mozina SS, Abram M (2007) Environmental stress factors affecting survival and virulence of Campylobacter jejuni. Microb Pathog 43(2–3):120–125

    Article  CAS  PubMed  Google Scholar 

  • Miller RA, Britigan BE (1997) Role of oxidants in microbial pathophysiology. Clin Microbiol Rev 10(1):1–18

    CAS  PubMed  Google Scholar 

  • Moen B, Oust A, Langsrud O, Dorrell N, Marsden GL, Hinds J, Kohler A, Wren BW, Rudi K (2005) Explorative multifactor approach for investigating global survival mechanisms of Campylobacter jejuni under environmental conditions. Appl Environ Microbiol 71(4):2086–2094

    Article  CAS  PubMed  Google Scholar 

  • Murphy C, Carroll C, Jordan KN (2003a) Identification of a novel stress resistance mechanism in Campylobacter jejuni. J Appl Microbiol 95(4):704–708

    Article  CAS  PubMed  Google Scholar 

  • Murphy C, Carroll C, Jordan KN (2003b) Induction of an adaptive tolerance response in the foodborne pathogen Campylobacter jejuni. FEMS Microbiol Lett 223(1):89–93

    Article  CAS  PubMed  Google Scholar 

  • Murphy C, Carroll C, Jordan KN (2006) Environmental survival mechanisms of the foodborne pathogen Campylobacter jejuni. J Appl Microbiol 100:623–632

    Article  CAS  PubMed  Google Scholar 

  • Oliver JD (1993) Formation of viable but nonculturable cells. Starvation in bacteria. Plenum, NY, pp 239–272

  • Oliver JD (2005) The viable but nonculturable state in bacteria. J Microbiol 43:93–100

    PubMed  Google Scholar 

  • Otwell WS, Kristinsson HG, Balaban MO (2006) Modified atmospheric processing and packaging of fish: filtered smokes, carbon monoxide, and reduced oxygen packaging. Blackwell, Ames, p 243

    Google Scholar 

  • Park SF (2002) The physiology of Campylobacter species and its relevance to their role as foodborne pathogens. Int J Food Microbiol 74(3):177–188

    Article  CAS  PubMed  Google Scholar 

  • Park SF (2005) Campylobacter jejuni stress responses during survival in the food chain and colonization. In: Ketley JM, Konkel ME (eds) Campylobacter molecular and cellular biology. Horizon Bioscience, Wymondham, pp 311–330

    Google Scholar 

  • Parkhill J, Wren BW, Mungall K, Ketley JM, Churcher C, Basham D, Chillingworth T, Davies RM, Feltwell T, Holroyd S, Jagels K, Karlyshev AV, Moule S, Pallen MJ, Penn CW, Quail MA, Rajandream MA, Rutherford KM, van Vliet AH, Whitehead S, Barrell BG (2000) The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403(6770):665–668

    Article  CAS  PubMed  Google Scholar 

  • Phillips CA (1996) Review: modified atmosphere packaging and its effects on the microbiological quality and safety. Int J Food Sci Tech 31(6):463

    Article  CAS  Google Scholar 

  • Pickert A, Botzenhart K (1985) Survival of Campylobacter jejuni in drinking water, river water and sewage. Zentralbl Bakteriol Mikrobiol Hyg [B] 182(1):49–57

    CAS  Google Scholar 

  • Qian H, Beard DA, Liang SD (2003) Stoichiometric network theory for nonequilibrium biochemical systems. Eur J Biochem 270:415–421

    Article  CAS  PubMed  Google Scholar 

  • Reezal A, McNeil B, Anderson JG (1998) Effect of low-osmolality nutrient media on growth and culturability of Campylobacter species. Appl Environ Microbiol 64(12):4643–4649

    CAS  PubMed  Google Scholar 

  • Reid AN, Pandey R, Palyada K, Naikare H, Stintzi A (2008) Identification of Campylobacter jejuni genes involved in the response to acidic pH and stomach transit. Appl Environ Microbiol 74(5):1583–1597

    Article  CAS  PubMed  Google Scholar 

  • Rollins DM, Colwell RR (1986) Viable but nonculturable stage of Campylobacter jejuni and its role in survival in the natural aquatic environment. Appl Environ Microbiol 52(3):531–538

    CAS  PubMed  Google Scholar 

  • Rowan NJ (2004) Viable but non-culturable forms of food and waterborne bacteria: quo vadis? Trends Food Sci Technol 15(9):462–467

    Article  CAS  Google Scholar 

  • Rudi K, Moen B, Dromtorp SM, Holck AL (2005) Use of ethidium monoazide and PCR in combination for quantification of viable and dead cells in complex samples. Appl Environ Microbiol 71(2):1018–1024

    Article  CAS  PubMed  Google Scholar 

  • Ruoff P, Zakhartsev M, Westerhoff HV (2007) Temperature compensation through systems biology. FEBS J 274:940–950

    Article  CAS  PubMed  Google Scholar 

  • Saha SK, Saha S, Sanyal SC (1991) Recovery of injured Campylobacter jejuni cells after animal passage. Appl Environ Microbiol 57:3388–3389

    CAS  PubMed  Google Scholar 

  • Sails AD, Fox AJ, Bolton FJ, Wareing DRA, Greenway DLA (2003) A real-time PCR assay for the detection of Campylobacter jejuni in foods after enrichment culture. Appl Environ Microbiol 69(3):1383–1390

    Article  CAS  PubMed  Google Scholar 

  • Scherer K, Bartelt E, Sommerfeld C, Hildebrandt G (2006) Comparison of different sampling techniques and enumeration methods for the isolation and quantification of Campylobacter spp. in raw retail chicken legs. Int J Food Microbiol 108(1):115–119

    Article  CAS  PubMed  Google Scholar 

  • Schmidt H, Hensel M (2004) Pathogenicity islands in bacterial pathogenesis. Clin Microbiol Rev 17(1):14–56

    Article  CAS  PubMed  Google Scholar 

  • Sellars MJ, Hall SJ, Kelly DJ (2002) Growth of Campylobacter jejuni supported by respiration of fumarate, nitrate, nitrite, trimethylamine-N-oxide, or dimethyl sulfoxide requires oxygen. J Bacteriol 184(15):4187–4196

    Article  CAS  PubMed  Google Scholar 

  • Sleator RD, Wouters J, Gahan CGM, Abee T, Hill C (2001) Analysis of the role of opuC, an osmolyte transport system, in salt tolerance and virulence potential of Listeria monocytogenes. Appl Environ Microbiol 67(6):2692–2698

    Article  CAS  PubMed  Google Scholar 

  • Solow BT, Cloak OM, Fratamico PM (2003) Effect of temperature on viability of Campylobacter jejuni and Campylobacter coli on raw chicken or pork skin. J Food Prot 66(11):2023–2031

    PubMed  Google Scholar 

  • Stephens PJ, Druggan P, Caron GN (2000) Stressed Salmonella are exposed to reactive oxygen species from two independent sources during recovery in conventional culture media. Int J Food Microbiol 60(2–3):269–285

    Article  CAS  PubMed  Google Scholar 

  • Stintzi A (2003) Gene expression profile of Campylobacter jejuni in response to growth temperature variation. J Bacteriol 185(6):2009–2016

    Article  CAS  PubMed  Google Scholar 

  • Suzuki H, Yamamoto S (2009) Campylobacter contamination in retail poultry meats and by-products in Japan: a literature survey. Food Control 20(6):531–537

    Article  CAS  Google Scholar 

  • Tangwatcharin P, Chanthachum S, Khopaibool P, Griffiths MW (2006) Morphological and physiological responses of Campylobacter jejuni to stress. J Food Prot 69(11):2747–2753

    PubMed  Google Scholar 

  • Tauxe RV, Nachamkin I, Blaser MJ, Tompkins LS (1992) Epidemiology of Campylobacter jejuni infections in the United States and other industrialized nations. American Society for Microbiology, Washington, pp 121–153

    Google Scholar 

  • Tenover FC, Patton CM (1987) Naturally occurring auxotrophs of Campylobacter jejuni and Campylobacter coli. J Clin Microbiol 25(9):1659–1661

    CAS  PubMed  Google Scholar 

  • Tenover FC, Knapp JS, Patton C, Plorde JJ (1985) Use of auxotyping for epidemiological studies of Campylobacter jejuni and Campylobacter coli infections. Infect Immun 48(2):384–388

    CAS  PubMed  Google Scholar 

  • Terzieva SI, McFeters GA (1991) Survival and injury of Escherichia coli, Campylobacter jejuni, and Yersinia enterocolitica in stream water. Can J Microbiol 37(10):785–790

    Article  CAS  PubMed  Google Scholar 

  • Thies FL, Karch H, Hartung HP, Giegerich G (1999) Cloning and expression of the dnaK gene of Campylobacter jejuni and antigenicity of heat shock protein 70. Infect Immun 67(3):1194–1200

    CAS  PubMed  Google Scholar 

  • Thomas C, Hill DJ, Mabey M (2002) Culturability injury and morphological dynamics of thermophilic Campylobacter spp. within a laboratory-based aquatic model system. J Appl Microbiol 92(3):433–442

    Article  CAS  PubMed  Google Scholar 

  • Thomas C, Hill DJ, Mabey M (1999) Evaluation of the effect of temperature and nutrients on the survival of Campylobacter spp. in water microcosms. J Appl Microbiol 86:1024–1032

    Article  CAS  PubMed  Google Scholar 

  • Thompson JS, Cahoon FE, Hodge DS (1986) Rate of Campylobacter spp. isolation in three regions of Ontario, Canada, from 1978 to 1985. J Clin Microbiol 24(5):876–878

    CAS  PubMed  Google Scholar 

  • Torres NV, Voit EO (2002) Target: a useful model. In: Analysis Pathway, Torres NV, Voit EO (eds) Optimization in metabolic engineering. Cambridge University Press, Madrid, pp 1–42

    Google Scholar 

  • Touati D (2000) Iron and Oxidative stress in bacteria. Arch Biochem Biophys 373:1–6

    Article  CAS  PubMed  Google Scholar 

  • Uyttendaele M, Taverniers I, Debevere J (2001) Effect of sress induced by suboptimal growth factors on survival of Escherichia coli 157:H7. Int J Food Microbiol 66:31–37

    Article  CAS  PubMed  Google Scholar 

  • van Vliet AH, Ketley JM, Park SF, Penn CW (2002) The role of iron in Campylobacter gene regulation, metabolism and oxidative stress defense. FEMS Microbiol Rev 26(2):173–186

    Article  PubMed  Google Scholar 

  • Velayudhan J, Kelly DJ (2002) Analysis of gluconeogenic and anaplerotic enzymes in Campylobacter jejuni: an essential role for phosphoenolpyruvate carboxykinase. Microbiology 148(3):685–694

    CAS  PubMed  Google Scholar 

  • Velayudhan J, Jones MA, Barrow PA, Kelly DJ (2004) L-Serine catabolism via an oxygen-labile l-serine dehydratase is essential for colonization of the avian gut by Campylobacter jejuni. Infect Immun 72(1):260–268

    Article  CAS  PubMed  Google Scholar 

  • Verhoeff-Bakkenes L, Hazeleger WC, de Jonge R, Zwietering MH (2009) Campylobacter jejuni: a study on environmental conditions affecting culturability and in vitro adhesion/invasion. J Appl Microbiol 106(3):924–931

    Article  CAS  PubMed  Google Scholar 

  • Wesley RD, Stadelman WJ (1985) The effect of carbon dioxide packaging on detection of Campylobacter jejuni for chicken carcasses. Poult Sci 64(4):763–764

    CAS  PubMed  Google Scholar 

  • Westfall HN, Rollins DM, Weiss E (1986) Substrate utilization by Campylobacter jejuni and Campylobacter coli Appl Environ Microbiol 52(4):700–705

    CAS  PubMed  Google Scholar 

  • White D (2000) The physiology and biochemistry of prokaryotes. Oxford University Press Inc, New York

    Google Scholar 

  • Williams LK, Jorgensen F, Grogono-Thomas R, Humphrey T (2009) Enrichment culture for the isolation of Campylobacter spp: effects of incubation conditions and the inclusion of blood in selective broths. Int J Food Microbiol 130(2):131–134

    Article  CAS  PubMed  Google Scholar 

  • Wright JA, Grant AJ, Hurd D, Harrison M, Guccione EJ, Kelly DJ, Maskell DJ (2009) Metabolite and transcriptome analysis of Campylobacter jejuni in vitro growth reveals a stationary-phase physiological switch. Microbiology 155(1):80–94

    Article  CAS  PubMed  Google Scholar 

  • Ziprin RL, Droleskey RE, Hume ME, Harvey RB (2003) Failure of viable nonculturable Campylobacter jejuni to colonize the cecum of newly hatched leghorn chicks. Avian Dis 47(3):753–758

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. T. Trevors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jackson, D.N., Davis, B., Tirado, S.M. et al. Survival mechanisms and culturability of Campylobacter jejuni under stress conditions. Antonie van Leeuwenhoek 96, 377–394 (2009). https://doi.org/10.1007/s10482-009-9378-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-009-9378-8

Keywords

Navigation