Skip to main content
Log in

Physiological implication of intracellular trehalose and mannitol changes in response of entomopathogenic fungus Beauveria bassiana to thermal stress

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

To explore possible role of intracellular trehalose accumulation in fungal tolerance to summer-like thermal stress, 3-day colonies of Beauveria bassiana grown on a glucose-free medium at 25°C were separately exposed to 35, 37.5 and 40°C for 1–18 h, respectively. Trehalose accumulation in stressed mycelia increased from initial 4.2 to 88.3, 74.7 and 65.5 mg g−1 biomass after 6-h stress at 35, 37.5 and 40°C, respectively, while intracellular mannitol level generally declined with higher temperatures and longer stress time. The stress-enhanced trehalose level was significantly correlated to decreased trehalase activity (r 2 = 0.73) and mannitol content (r 2 = 0.38), which was inversely correlated to the activity of mannitol dehydrogenase (r 2 = 0.41) or mannitol 1-phosphate dehydrogenase (r 2 = 0.30) under the stresses. All stressed cultures were successfully recovered at 25°C but their vigor depended on stressful temperature, time length and the interaction of both (r 2 = 0.98). The highest level of 6-h trehalose accumulation at 35°C was found enhancing the tolerance of the stressed cultures to the greater stress of 48°C. The results suggest that the trehalose accumulation result partially from metabolized mannitol and contribute to the fungal thermotolerance. Trehalase also contributed to the thermotolerance by hydrolyzing accumulated trehalose under the conditions of thermal stress and recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Download references

Acknowledgments

Founding of this study was provided jointly by the Ministry of Science and Technology of China (2007DFA3100, 2006AA10A212 and 2007AA021305), the Natural Science Foundation of China (30571250), and the R&D Program of Zhejiang Province (2007C12035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Guang Feng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Q., Ying, SH., Feng, MG. et al. Physiological implication of intracellular trehalose and mannitol changes in response of entomopathogenic fungus Beauveria bassiana to thermal stress. Antonie van Leeuwenhoek 95, 65–75 (2009). https://doi.org/10.1007/s10482-008-9288-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-008-9288-1

Keywords

Navigation