Skip to main content
Log in

Wolinella succinogenes response to ox-bile stress

  • CHRO RESEARCH
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The bacterium Wolinella succinogenes is the only known species of its genus. It was first isolated from cow ruminal fluid, and in cattle, it dwells in the reticulum and rumen compartments of the stomach. The global protein response of W. succinogenes to ox-bile was investigated with the aim to understand bile-tolerance mechanisms of the bacterium. Bacteria were grown in liquid media supplemented with different bile concentrations to determine its effects on growth and morphology. Proteomic analyses served to identify 14 proteins whose expression was modulated by the presence of 0.2% bile. Quantitative real-time PCR analyses of the expression of selected genes were employed to obtain independent confirmation of the proteomics data. Proteins differentially expressed revealed metabolic pathways involved in the adaptation of W. succinogenes to bile. The data suggested that bile stress elicited complex physiological responses rather than just specific pathways, and identified proteins previously unknown to be involved in the adaptation of bacteria to bile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allen KJ, Griffiths MW (2001) Effect of environmental and chemotactic stimuli on the activity of the Campylobacter jejuni flaA sigma(28) promoter. FEMS Microbiol Lett 205:43–48

    PubMed  CAS  Google Scholar 

  • Baar C, Eppinger M, Raddatz G, Simon J, Lanz C, Klimmek O, Nandakumar R, Gross R, Rosinus A, Keller H, Jagtap P, Linke B, Meyer F, Lederer H, Schuster SC (2003) Complete genome sequence and analysis of Wolinella succinogenes. Proc Natl Acad Sci USA 100:11690–11695

    Article  PubMed  CAS  Google Scholar 

  • Begley M, Gahan CGM, Hill C (2004) The interaction between bacteria and bile. FEMS Microbiol Rev 29:625–651

    Article  Google Scholar 

  • Bernstein C, Bernstein H, Payne CM, Beard SE, Schneider J (1999) Bile salt activation of stress response promoters in Escherichia coli. Curr Microbiol 39:68–72

    Article  PubMed  CAS  Google Scholar 

  • Bohr UR, Segal I, Primus A, Wex T, Hassan H, Ally R., Malfertheiner P (2003) Detection of a putative novel Wolinella species in patients with squamous cell carcinoma of the esophagus. Helicobacter 8:608–612

    Article  PubMed  Google Scholar 

  • Caldas TD, El Yaagoubi A, Richarme G (1998) Chaperone properties of bacterial elongation factor EF-Tu. J Biol Chem 273:11478–11482

    Article  PubMed  CAS  Google Scholar 

  • Caldas TD, Laalami S, Richarme G (2000) Chaperone properties of bacterial elongation factor EF-G and initiation factor IF2. J Biol Chem 275:885–860

    Google Scholar 

  • Clavel T, Lazzaroni JC, Vianney A, Portalier R (1996) Expression of the tolQRA genes of Escherichia coli K-12 is controlled by the RcsC sensor protein involved in capsule synthesis. Mol Microbiol 19:19–25

    Article  PubMed  CAS  Google Scholar 

  • Eppinger M, Baar C, Raddatz G, Huson DH, Schuster SC (2004) Comparative analysis of four Campylobacterales. Nat Rev Microbiol 2:872–885

    Article  PubMed  CAS  Google Scholar 

  • Feder ME, Hofmann GE (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61:243–282

    Article  PubMed  CAS  Google Scholar 

  • Fox EM, Raftery M, Goodchild A, Mendz GL (2006) Campylobacter jejuni response to ox-bile stress. FEMS Immunol Med Microbiol 49(1):165–172

    Article  Google Scholar 

  • Gunn JS (2000) Mechanisms of bacterial resistance and response to bile. Microbes Infect 2:907–913

    Article  PubMed  CAS  Google Scholar 

  • Halligan BD, Ruotti V, Jin W, Laffoon S, Twigger SN, Dratz EA (2004) ProMoST (Protein Modification Screening Tool): a web-based tool for mapping protein modifications on two-dimensional gels. Nucleic Acids Res 32:W638–W644

    Article  PubMed  CAS  Google Scholar 

  • Hofmann AF (1999) Bile acids: the good, the bad, and the ugly. News Physiol Sci 14:24–29

    PubMed  CAS  Google Scholar 

  • Jayasekera MM, Shi W, Farber GK, Viola RE (1997) Evaluation of functionally important amino acids in l-aspartate ammonia-lyase from Escherichia coli. Biochemistry 36:9145–9150

    Article  PubMed  CAS  Google Scholar 

  • Kiss E, Huguet T, Poinsot V, Batut J (2004) The typA gene is required for stress adaptation as well as for symbiosis of Sinorhizobium meliloti 1021 with certain Medicago truncatula lines. Mol Plant Microbe Interact 17:235–244

    Article  PubMed  CAS  Google Scholar 

  • Len AC, Harty DW, Jacques NA (2004a) Proteome analysis of Streptococcus mutans metabolic phenotype during acid tolerance. Microbiology 150:1353–1366

    Article  CAS  Google Scholar 

  • Len ACL, Harty DWS, Jacques NA (2004b) Stress-responsive proteins are up-regulated in Streptococcus mutans during acid tolerance. Microbiology 150:1339–1351

    Article  CAS  Google Scholar 

  • Leverrier P, Dimova D, Pichereau V, Auffray Y, Boyaval P, Jan G (2003) Susceptibility and adaptive response to bile salts in Propionibacterium freudenreichii: physiological and proteomic analysis. Appl Environ Microbiol 69:3809–3818

    Article  PubMed  CAS  Google Scholar 

  • Lin J, Sahin O, Michel LO, Zhang Q (2003) Critical role of multidrug efflux pump CmeABC in bile resistance and in vivo colonization of Campylobacter jejuni. Infect Immun 71:4250–4259

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-??C(T)) Method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Masci E, Testoni PA, Fanti L, Guslandi M, Zuin M, Tittobello A (1987) Duodenogastric reflux: correlations among bile acid pattern, mucus secretion, and mucosal damage. Scand J Gastroenterol 22:308–312

    PubMed  CAS  Google Scholar 

  • Mekalanos JJ (1992) Environmental signals controlling expression of virulence determinants in bacteria. J Bacteriol 174:1–7

    PubMed  CAS  Google Scholar 

  • Okoli AS, Wadstrom T, Mendz GL (2006) Bioinformatic study of bile responses in Campylobacterales. FEMS Immunol Med Microbiol 49(1):101–123

    Article  Google Scholar 

  • Osawa R, Yamai S (1996) Production of thermostable direct hemolysin by Vibrio parahaemolyticus enhanced by conjugated bile acids. Appl Environ Microbiol 62:3023–3025

    PubMed  CAS  Google Scholar 

  • Pace JL, Chai TJ, Rossi HA, Jiang X (1997) Effect of bile on Vibrio parahaemolyticus. Appl Environ Microbiol 63:2372–2377

    PubMed  CAS  Google Scholar 

  • Parish CA, Rando RR (1996) Isoprenylation/methylation of proteins enhances membrane association by a hydrophobic mechanism. Biochemistry 35:8473–8477

    Article  PubMed  CAS  Google Scholar 

  • Raphael BH, Pereira S, Flom GA, Zhang Q, Ketley JM, Konkel ME (2005) The Campylobacter jejuni response regulator, CbrR, modulates sodium deoxycholate resistance and chicken colonization. J Bacteriol 187:3662–3670

    Article  PubMed  CAS  Google Scholar 

  • Rivera-Amill V, Kim BJ, Seshu J, Konkel ME (2001) Secretion of the virulence-associated Campylobacter invasion antigens from Campylobacter jejuni requires a stimulatory signal. J Infect Dis 183:1607–1616

    Article  PubMed  CAS  Google Scholar 

  • Rodionov DA, Vitreschak AG, Mironov AA, Gelfand MS (2004) Comparative genomics of the methionine metabolism in Gram-positive bacteria: a variety of regulatory systems. Nucleic Acids Res 32:3340–3353

    Article  PubMed  CAS  Google Scholar 

  • Russell JB, Rychlik JL (2001) Factors that alter rumen microbial ecology. Science 292:1119–1122

    Article  PubMed  CAS  Google Scholar 

  • Sanchez B, Champomier-Verges MC, Anglade P, Baraige F, de Los Reyes-Gavilan CG, Margolles A, Zagorec M (2005) Proteomic analysis of global changes in protein expression during bile salt exposure of Bifidobacterium longum NCIMB 8809. J Bacteriol 187:5799–5808

    Article  PubMed  CAS  Google Scholar 

  • Savijoki K, Suokko A, Palva A, Valmu L, Kalkkinen N, Varmanen P (2005) Effect of heat-shock and bile salts on protein synthesis of Bifidobacterium longum revealed by [35S]methionine labelling and two-dimensional gel electrophoresis. FEMS Microbiol Lett 248:207–215

    Article  PubMed  CAS  Google Scholar 

  • Sekowska A, Bertin P, Danchin A (1998) Characterization of polyamine synthesis pathway in Bacillus subtilis 168. Mol Microbiol 29:851–858

    Article  PubMed  CAS  Google Scholar 

  • Simon J, Gross R, Klimmek O, Kroger A (2000) The genus Wolinella. The Prokaryotes. 3rd edn. Springer-Verlag, New York, USA

    Google Scholar 

  • Synder L, Champness W (2003) Molecular Genetics of Bacteria. ASM Press, Herndon, VA, USA

    Google Scholar 

  • Tavori H, Kimmel Y, Barak Z (1981) Toxicity of leucine-containing peptides in Escherichia coli caused by circumvention of leucine transport regulation. J Bacteriol 146:676–683

    PubMed  CAS  Google Scholar 

  • Thanassi DG, Cheng LW, Nikaido H (1997) Active efflux of bile salts by Escherichia coli. J Bacteriol 179:2512–2518

    PubMed  CAS  Google Scholar 

  • Valdes-Stauber N, Scherer S (1994) Isolation and characterization of Linocin M18, a bacteriocin produced by Brevibacterium linens. Appl Environ Microbiol 60:3809–3814

    PubMed  CAS  Google Scholar 

  • Wolin MJ, Wolin EA, Jacobs NJ (1961) Cytochrome-producing anaerobic Vibrio succinogenes, sp. n. J Bacteriol 81:911–917

    PubMed  CAS  Google Scholar 

  • Zhang L, Day A, Mckenzie G, Mitchell H (2006) Nongastric Helicobacter species detected in the intestinal tract of children. J Clin Microbiol 44:2276–2279

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Mr Edward Fox, Mr Arinze Okoli and Mr Nadeem Kaakoush for valuable discussions and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George L. Mendz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, B.M., Tu, Q.V., Kovach, Z. et al. Wolinella succinogenes response to ox-bile stress. Antonie van Leeuwenhoek 92, 319–330 (2007). https://doi.org/10.1007/s10482-007-9151-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-007-9151-9

Keywords

Navigation