Skip to main content
Log in

Structural and functional features of fructansucrases present in Leuconostoc mesenteroides ATCC 8293

  • Original paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Glycosyltransferases produced by Leuconostoc mesenteroides subsp. mesenteroides ATCC 8293 (equivalent to NRRL B-1118) were identified. Two glucansucrases and one fructansucrases were observed in batch culture while levC and levL genes, corresponding to two fructansucrases, were isolated from information obtained from the released draft sequence of this Leuconostoc strain genome and cloned in Escherichia coli. The recombinant enzymes were shown to be fructansucrases producing a polymer identified by NMR as levan, confirming our recent report stating that these are also mosaic levansucrases bearing structural features of glucansucrases in the amino and carboxy terminal regions, as is also the case of inulosucrase (IslA) from Leuconostoc citreum CW28 and levansucrase (LevS) from L. mesenteroides NRRL B-512F. The recombinant levansucrase LevC was purified and characterized in terms of pH, temperature, and kinetic properties. The enzyme exhibits Michaelis–Menten kinetic properties with a K m = 27.3 mM and a k cat = 282.9 s−1. This levansucrase behaves mainly as a transferase as only 30% of the substrate is hydrolyzed in a wide range of sucrose concentrations, with higher hydrolytic activities at low substrate concentrations. With this report we experimentally confirm the unusual structural pattern displayed by fructansucrases present in Leuconostoc species that group as a novel sub family of fructansucrases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ammar YB, Matubara T, Ito K, Iizuka M, Limpaseni P, Pongsawasdi P, Minamiura N (2002) Characterization of thermostable levansucrase from Bacillus sp. TH4-2 capable of producing high molecular weight levan at high temperature. J Biotechnol 99:111–119

    Article  PubMed  Google Scholar 

  • Armuzzi A, Cremonini F, Bartolozzi F, Canducci F, Candelli M, Ojetti V, Cammarota G, Anti M, De Lorenzo A, Pola P, Gasbarrini G, Gasbarrini A, (2001) The effect of oral administration of Lactobacillus GG on antibiotic-associated gastrointestinal side-effects during Helicobacter pylori eradication therapy. Aliment Pharmacol Ther 15(2):163–169

    Article  PubMed  CAS  Google Scholar 

  • Bozonnet S, Dols-Laffargue M, Fabre E, Pizzut S, Remaud-Simeon M, Monsan P ,Willemont R (2002) Molecular characterization of DSR-E, an α−1,2 linkage-synthesizing dextransucrase with two catalytic domains. J Bacteriol 184(20):5753–5761

    Article  PubMed  CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Burne RA, Chen YY, Wexler DL, Kuramitsu H Bowen WH (1996) Cariogenicity of Streptococcus mutans strains with defects in fructan metabolism assessed in a program-fed specific-pathogen-free rat model. J Dent Res 75(8):1572–1577

    PubMed  CAS  Google Scholar 

  • Castillo E, Lopez-Munguia A (2004) Synthesis of levan in water-miscible organic solvents. J Biotechnol 114(1–2):209–217

    Article  PubMed  CAS  Google Scholar 

  • Chambert R, Treboul G, Dedonder R (1974) Kinetic studies of levansucrase of Bacillus subtilis. Eur J Biochem 41(2):285–300

    Article  PubMed  CAS  Google Scholar 

  • Cummings L, Riley L, Black L, Souvorov A, Resenchuk S, Dondoshansky I, Tatusova T (2002) Genomic BLAST: custom-defined virtual databases for complete and unfinished genomes. FEMS Microbiol Lett 216(2):133–138

    Article  PubMed  CAS  Google Scholar 

  • Figures WR, Edwards JR (1979) Resolution of the glycosyltransferase activities from two strains of Streptococcus mutans by polyacrylamide gel electrophoresis in the presence of Tween 80. Biochim Biophys Acta 577(1):142–146

    PubMed  CAS  Google Scholar 

  • Hernandez L, Arrieta J, Menéndez C, Vazquez R, Coego A, Suarez V, Selman G, Petit-Glatron MF, Chambert R (1995) Isolation and enzymatic properties of levansucrase secreted by Acetobacter diazotrophicus SRT4, a bacterium associated with sugar cane. Biochem J 309:113–118

    PubMed  CAS  Google Scholar 

  • Hettwer U, Gross MR (1995) Purification and characterization of an extracellular levansucrase from Pseudomonas syringae pv phaseolicola. J Bacteriol 177:2834–2839

    PubMed  CAS  Google Scholar 

  • Higgins D, Thompson J, Gibson T, Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  Google Scholar 

  • Jacques NA (1993) The fructosyltransferase of Streptococcus salivarius. New Phytol 123:429–435

    Article  CAS  Google Scholar 

  • Kim HJ, Yang JY, Lee HG, Cha JH (2001) Cloning and sequence analysis of a levansucrase gene from Rahnella aquatilis ATCC15552. J Microb Biotechnol 11:639–699

    Google Scholar 

  • Korakli M, Ganzle MG, Vogel RF (2002) Metabolism by bifidobacteria and lactic acid bacteria of polysaccharides from wheat and rye, and exopolysaccharides produced by Lactobacillus sanfranciscensis. J Appl Microbiol 92:958–965

    Article  PubMed  CAS  Google Scholar 

  • Lopez A, Monsan P (1980) Dextran synthesis by immobilized dextransucrase. Biochimie 62:323–329

    Article  CAS  PubMed  Google Scholar 

  • Meng G, Futterer K (2003) Structural framework of fructosyl transfer in Bacillus subtilis levansucrase. Nat Struct Biol 11:935–941

    Article  CAS  Google Scholar 

  • Monchois V, Remaud-Simeon M, Russell RR, Monsan P, Willemot RM (1997) Characterization of Leuconostoc mesenteroides NRRL B-512F dextransucrase (DSRS) and identification of amino-acid residues playing a key role in enzyme activity. Appl Microbiol Biotechnol 48(4):465–472

    Article  PubMed  CAS  Google Scholar 

  • Monsan P, Bozonnet S, Albenne C, Joucla G, Willemont R, Remaud-Simeon M (2001) Homopolysaccharides from lactic acid bacteria. Int Dairy J 11:675–685

    Article  CAS  Google Scholar 

  • Morales-Arrieta S, Rodriguez ME, Segovia L, Lopez-Munguia A, Olvera-Carranza C (2006) Identification and functional characterization of levS, a gene encoding for a levansucrase from Leuconostoc mesenteroides NRRL B-512 F. Gene 376(1):59–67

    Article  PubMed  CAS  Google Scholar 

  • Newbrun E, Baker S (1968) Physico-chemical characteristics of the levan produced by Streptococcus salivarius. Carbohydr Res 6:165–170

    Article  CAS  Google Scholar 

  • Oda M, Hasegawa H, Komatsu S, Kambe M, suchiya FT (1983) Antitumour polysaccharide from Lactobacillus sp. Agric Biol Chem 47:1623

    CAS  Google Scholar 

  • Olivares-Illana IV, López-Munguía A, Olvera C (2003) Molecular characterization of inulosucrase from Leuconostoc citreum: a Fructosyltransferase within a Glucosyltransferase. J Bacteriol 185:3606–3612

    Article  PubMed  CAS  Google Scholar 

  • Ortiz-Soto ME, Olivares-Illana V, Lopez-Munguia A (2004) Biochemical properties of inulosucrase from Leuconostoc citreum CW28 used for inulin synthesis. Biocatal Biotransfor 22(4):275–281

    Article  CAS  Google Scholar 

  • Pons T, Hernández L, Batista F, Chinea G (2000) Prediction of a common β-propeller catalytic domain for fructosiltransferases of different origin and substrate specificity. Protein Sci 9:2289–2291

    Google Scholar 

  • Rozen R, Steinberg D, Bachrach G (2004) Streptococcus mutans fructosyltransferase interaction with glucans. FEMS Micriobiol Lett 32(1):39–43

    Article  CAS  Google Scholar 

  • Russell RR (1990) Molecular genetics of glucan metabolism in oral streptococci. Arch Oral Biol 35 Suppl 53S–58S

    Article  PubMed  CAS  Google Scholar 

  • Shimamura A, Tsuboi K, Nagase T, Ito M, Tsumori H, Mukasa H (1987) Structural determination of d-fructans from Streptococcus mutans, serotype d, c, e and f strains, by 13C-NMR spectroscopy. Carbohydr Res 165:150–154

    Article  PubMed  CAS  Google Scholar 

  • Sumner JB, Howell SF (1935) A method for determination of saccharase activity. J Biol Chem 108:51–54

    CAS  Google Scholar 

  • Tieking M, Ehrmann MA, Vogel RF, Ganzle MC (2005) Molecular and functional characterization of a levansucrase from the sourdough isolate Lactobacillus sanfranciscensis TMW 1.392. Appl Microbiol Biotechnol 66(6):655–663

    Article  PubMed  CAS  Google Scholar 

  • van Hijum SA, Bonting K, van der Maarel MJ, Dijkhuizen L, (2001) Purification of a novel fructosyltransferase from Lactobacillus reuteri strain 121 and characterization of the levan produced. FEMS Microbiol Lett 205(2):323–328

    Article  PubMed  Google Scholar 

  • van Hijum SA, Szalowska E, van der Maarel MJ, Dijkhuizen L, (2004) Biochemical and molecular characterization of a levansucrase from Lactobacillus reuteri. Microbiology 150(3):621–630

    Article  PubMed  CAS  Google Scholar 

  • van Hijum SA, van der Maarel MJ, Dijkhuizen L (2003) Kinetic properties of an inulosucrase from Lactobacillus reuteri 121. FEBS Lett 534(1–3):207–210

    Article  PubMed  Google Scholar 

  • van Hijum S, van Greel-Schutten H, Rahaoui H, van der Maarel M, Dijkhuizen L (2002) Characterization of a novel fructosyltransferase from Lactobacillus reuteri that synthesized high-molecular-weight inulin and inulin oligosacharides. Appl Environ Microbiol 68:4390–4398

    Article  PubMed  CAS  Google Scholar 

  • van Hijum SA, Kralj S, Ozimek LK, Dijkhuizen L, van Geel-Schutten IG (2006) Structure–function relationships of glucansucrase and fructansucrase enzymes from lactic acid bacteria. Microbiol Mol Biol Rev 70(1):157–176

    Article  PubMed  CAS  Google Scholar 

  • Yanase H, Iwata M, Nakahigashi R, Kita K, Tonomura K, (1992) Purification, crystallization and properties of the extracellular levansucrase from Zymomonas mobilis. Biosci Biotechnol Biochem 56:1335–1336

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by Consejo Nacional de Ciencia y Tecnología (CONACyT) no. 40609-Z and by UNAM (PAPIIT No. IN228006–3). We thank Fernando González, Maria Elena Rodriguez and Ricardo Ciria for technical assistance. We also thank Eugenio López, Paul Gaytán, and Jorge Yáñez, for the primer synthesis and sequences analysis

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agustín López-Munguía.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olvera, C., Centeno-Leija, S. & López-Munguía, A. Structural and functional features of fructansucrases present in Leuconostoc mesenteroides ATCC 8293. Antonie van Leeuwenhoek 92, 11–20 (2007). https://doi.org/10.1007/s10482-006-9128-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-006-9128-0

Keywords

Navigation