Skip to main content
Log in

Interpretation of mtDNA RFLP variability among Aspergillus tubingensis isolates

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Aspergillus tubingensis isolates collected from distant geographic areas were earlier classified into six groups on the basis of the mtDNA RFLP variability they exhibited (mtDNA types 2a–2f). In the present work, we investigated the reason for the intraspecific mtDNA variability and we describe here how this fungus, with a relatively small mitochondrial genome, can display intraspecific polymorphism due to intron acquisition and also sporadic point mutations affecting the recognition motifs of the restriction enzymes employed in the RFLP analysis. Three different LAGLI-DADG type group I introns were identified in the cox1 gene amongst the six mtDNA RFLP types. MtDNAs of types 2b and 2d contain all of the three introns, mtDNA of type 2f carries only one, and the other mtDNA types contain two introns each. Comparative analysis showed that the first and second introns of mtDNAs of types 2b and 2d are well distributed among fungi, indicating their active horizontal transfer capacity. The third intron occurs rarely among fungi and is restricted to a limited number of fungal species, namely to A. tubingensis and the yeast Candida stellata. It is interesting that this intron is present in a small mitochondrial genome such as that of A. tubingensis and, considering its rarity, its presence amongst black Aspergillus isolates is recommended to be considered as a tool to establish taxonomical unit(s) or to track down evolutionary divergence of closely related taxonomical units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Atschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Google Scholar 

  • Belcour L, Rossignol M, Koll F, Sellem CH, Oldani C (1997) Plasticity of the mitochondrial genome in Podospora. Polymorphism for 15 optional sequences: group-I, group-II introns, intronic ORFs and an intergenic region. Curr Genet 31:308–317

    Article  PubMed  CAS  Google Scholar 

  • Belfort M, Reaban ME, Coetzee T, Dalgaard JZ (1995) Prokaryotic introns and inteins: a panoply of form and function. J Bacteriol 177:3897–3903

    PubMed  CAS  Google Scholar 

  • Bell PD, Quirk S, Clyman J, Belfort M (1990) Intron mobility in phage T4 is dependent upon a distinctive class of endonucleases and independent of DNA sequences encoding the intron core: mechanistic and evolutionary implications. Nucleic Acids Res 18:3763–3770

    Article  Google Scholar 

  • Bullerwell CE, Leigh J, Forget L, Lang BF (2003) A comparison of three fission yeast mitochondrial genomes. Nucleic Acids Res 31:759–768

    Article  PubMed  CAS  Google Scholar 

  • Cummings DJ, McNally KL, Domenico JM, Matsuura ET (1990) The complete DNA sequence of the mitochondrial genome of Podospora anserina. Curr Genet 17:375–402

    Article  PubMed  CAS  Google Scholar 

  • Dalgaard JZ, Garrett RA, Belfort M (1993) A site-specific endonuclease encoded by a typical archaeal intron. Proc Natl Acad Sci USA 90:5414–5417

    Article  PubMed  CAS  Google Scholar 

  • Foury F, Roganti T, Lecrenier N, Purnelle B (1998) The complete sequence of the mitochondrial genome of Saccharomyces cerevisiae. FEBS Lett 440:325–331

    Article  PubMed  CAS  Google Scholar 

  • Gimble FS, Stephens BW (1995) Substitutions in conserved dodecapeptide motifs that uncouple the DNA binding and DNA cleavage activities of PI-SceI endonuclease. J Biol Chem 270:5849–5856

    Article  PubMed  CAS  Google Scholar 

  • Hamari Z, Kevei F, Kovács É, Varga J, Kozakiewicz Z, Croft JH (1997) Molecular and phenotypic characterisation of Aspergillus japonicus and Aspergillus aculeatus strains with special regard to their mitochondrial DNA polymorphisms. Anton Van Leeuwen 72:337–347

    Article  CAS  Google Scholar 

  • Hamari Z, Pfeiffer I, Ferenczy L, Kevei F (1999) Interpretation of variability of mitochondrial genomes in the species Aspergillus carbonarius. Anton Van Leeuwen 75:225–231

    Article  CAS  Google Scholar 

  • Hamari Z, Juhász Á, Gácser A, Kucsera J, Pfeiffer I, Kevei F (2001) Intron mobility results in rearrangement in mitochondrial DNAs of heterokaryon incompatible Aspergillus japonicus strains after protoplast fusion. Fungal Genet Biol 33:83–95

    Article  PubMed  CAS  Google Scholar 

  • Hirata R, Ohsumk Y, Nakano A, Kawasaki H, Suzuki K, Anraku Y (1990) Molecular structure of a gene, VMA1, encoding the catalytic subunit of H(+)-translocating adenosine triphosphatase from vacuolar membranes of Saccharomyces cerevisiae. J Biol Chem 265:6726–6733

    PubMed  CAS  Google Scholar 

  • Hudspeth MES (1992) The fungal mitochondrial genome – a broader perspective. In: Arora DK, Elander RP, Mukerji KG (eds) Handbook of applied mycology, vol. 4. Fungal biotechnology. Marcel Dekker Inc., New York, pp 213–241

  • Juhász Á, Láday M, Gácser A, Kucsera J, Pfeiffer I, Kevei F, Hamari Z (2004) Mitochondrial DNA organisation of the mtDNA type 2b of Aspergillus tubingensis compared to the Aspergillus niger mtDNA type 1a. FEMS Microbiol Lett 241:119–126

    Article  PubMed  CAS  Google Scholar 

  • Kane PM, Yamashiro CT, Wolczyk DF, Neff N, Goebl M, Stevens TH (1990) Protein splicing converts the yeast TFP1 gene product to the 69-kD subunit of the vacuolar H(+)-adenosine triphosphatase. Science 250:651–657

    Article  PubMed  CAS  Google Scholar 

  • Kistler HC, Benny U (1989) The mitochondrial genome of Fusarium oxysporum. Plasmid 22:86–89

    Article  PubMed  CAS  Google Scholar 

  • Lambowitz AM, Belfort M (1993) Introns as mobile elements. Annu Rev Biochem 62:587–622

    Article  PubMed  CAS  Google Scholar 

  • Langkjaer RB, Casaregola S, Ussery DW, Gaillardin C, Piskur J (2003) Sequence analysis of three mitochondrial DNA molecules reveals interesting differences among Saccharomyces yeasts. Nucleic Acids Res 31:3081–3091

    Article  PubMed  CAS  Google Scholar 

  • Láday M, Pfeiffer I, Kucsera J, Kevei F, Gácser A, Szécsi Á, Hamari Z (2001) Preparation of mitochondrial DNA from yeast and filamentous fungi. BioTechniques 30:1232–1233

    PubMed  Google Scholar 

  • Mota EM, Collins RA (1988) Independent evolution of structural and coding regions in a Neurospora mitochondrial intron. Nature 332:654–656

    Article  PubMed  CAS  Google Scholar 

  • Pearson WR, Lipman DJ (1988) Improved tools for biological sequence comparison. Proc Natl Acad Sci USA 85:2444–2448

    Article  PubMed  CAS  Google Scholar 

  • Pontecorvo G, Roper JA, Hemmons LM, MacDonald KD, Bufton AWJ (1953) The genetics of Aspergillus nidulans. Adv Genet 5:141–238

    Article  PubMed  CAS  Google Scholar 

  • Saguez C, Lecellier G, Koll F (2000) Intronic GIY-YIG endonuclease gene in the mitochondrial genome of Podospora curvicolla: evidence for mobility. Nucleic Acids Res 28:1299–1306

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Scazzocchio C (1987) The natural history of fungal mitochondrial genomes. In: Rayner ADM, Brasier CM, Moore D (eds) Evolutionary biology of the fungi. Cambridge Univ. Press, Cambridge, UK, pp 53–73

    Google Scholar 

  • Sellem CH, d’Aubenton-Carafa Y, Rossignol M, Belcour L (1996) Mitochondrial intronic open reading frames in Podospora: mobility and consecutive exonic sequence variations. Genetics 143:777–788

    PubMed  CAS  Google Scholar 

  • Sharma M, Ellis RL, Hinton DM (1992) Identification of a family of bacteriophage T4 genes encoding proteins similar to those present in group I introns of fungi and phage. Proc Natl Acad Sci USA 89:6658–6662

    Article  PubMed  CAS  Google Scholar 

  • Shub DA, Gott JM, Xu MQ, Lang BF, Michel F, Tomaschewski J, Pedersen LJ, Belfort M (1988) Structural conservation among three homologous introns of bacteriophage T4 and the group I introns of eukaryotes. Proc Natl Acad Sci USA 85:1151–1155

    Article  PubMed  CAS  Google Scholar 

  • Su CS, Meyer SA (1991) Characterization of mitochondrial DNA in various Candida species: isolation, restriction endonuclease analysis, size, and base composition. Int J Syst Bacteriol 41:6–14

    Article  PubMed  CAS  Google Scholar 

  • Varga J, Kevei F, Vriesema A, Debets F, Kozakiewicz Z, Croft JH (1994) Mitochondrial DNA restriction fragment length polymorphisms in field isolates of the Aspergillus niger aggregate. Can J Microbiol 40:612–621

    PubMed  CAS  Google Scholar 

  • Varga J, Kevei F, Hamari Z, Tóth B, Téren J, Croft JH, Kozakiewicz Z (2000) Genotypic and phenotypic variability among black Aspergilli. In: Samson RA, Pitt JI (eds) Integration of modern taxonomic methods for Penicillium and Aspergillus classification. Harwood Academic Publishers, Amsterdam, pp 397–412

    Google Scholar 

  • Weber CA, Hudspeth ME, Moore GP, Grossman LI (1986) Analysis of the mitochondrial and nuclear genomes of two basidiomycetes, Coprinus cinereus and Coprinus stercorarius. Curr Genet 10:515–525

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant T 037584 from the Hungarian Scientific Research Foundation (OTKA) to Prof. Ferenc Kevei. This paper is dedicated to the memory of Prof. Kevei, who tragically passed away in 2003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zsuzsanna Hamari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Juhász, Á., Engi, H., Pfeiffer, I. et al. Interpretation of mtDNA RFLP variability among Aspergillus tubingensis isolates. Antonie van Leeuwenhoek 91, 209–216 (2007). https://doi.org/10.1007/s10482-006-9110-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-006-9110-x

Keywords

Navigation