Skip to main content

Advertisement

Log in

Megaplasmids encode differing combinations of lantibiotics in Streptococcus salivarius

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Streptococcus salivarius strains commonly produce bacteriocins as putative anticompetitor or signalling molecules. Here we report that bacteriocin production by the oral probiotic strain S. salivarius K12 is encoded by a large (ca. 190 kb) plasmid. Oral cavity transmission of the plasmid from strain K12 to a plasmid-negative variant of this bacterium was demonstrated in two subjects. Tests of additional S. salivarius strains showed large (up to ca. 220 kb) plasmids present in bacteriocin-producing isolates. Various combinations (up to 3 per plasmid) of loci encoding the known streptococcal lantibiotics salivaricin A, salivaricin B, streptin and SA-FF22 were localised to these plasmids. Since all bacteriocin-producing strains of S. salivarius tested to date appear to harbour plasmids, it appears that they may function as mobile repositories for bacteriocin loci, especially those of the lantibiotic class.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alam S, Brailsford SR, Whiley RA, Beighton D (1999) PCR-based methods for genotyping viridans group streptococci. J Clin Microbiol 37:2772–2776

    PubMed  CAS  Google Scholar 

  • Aso Y, Koga H, Sashihara T, Nagao J, Kanemasa Y, Nakayama J, Sonomoto K (2005) Description of complete DNA sequence of two plasmids from the nukacin ISK-1 producer, Staphylococcus warneri ISK-1. Plasmid 53:164–178

    Article  PubMed  CAS  Google Scholar 

  • Bachrach G, Leizerovici-Zigmond M, Zlotkin A, Naor R, Steinberg D (2003) Bacteriophage isolation from human saliva. Lett Appl Microbiol 36:50–53

    Article  PubMed  Google Scholar 

  • Baker M (2005) Better living through microbes. Nat Biotechnol 23:645–647

    Article  PubMed  CAS  Google Scholar 

  • Beall B, Facklam R, Thompson T (1996) Sequencing emm-specific PCR products for routine and accurate typing of group A streptococci. J Clin Microbiol 34:953–958

    PubMed  CAS  Google Scholar 

  • Bolotin A, Quinquis B, Renault P et al (2004) Complete sequence and comparative genome analysis of the dairy bacterium Streptococcus thermophilus. Nat Biotechnol 22:1554–1558

    Google Scholar 

  • Buckley ND, Vadeboncoeur C, LeBlanc DJ, Lee LN, Frenette M (1999) An effective strategy, applicable to Streptococcus salivarius and related bacteria, to enhance or confer electroporation competence. Appl Environ Microbiol 65:3800–3804

    PubMed  CAS  Google Scholar 

  • Burton J, Chilcott C, Tagg J (2005) The rationale and potential for the reduction of oral malodour using Streptococcus salivarius probiotics. Oral Dis 11:29–31

    Article  PubMed  Google Scholar 

  • Dempster RP, Tagg JR (1982) The production of bacteriocin-like substances by the oral bacterium Streptococcus salivarius. Arch Oral Biol 27:151–157

    Article  PubMed  CAS  Google Scholar 

  • Deng H, Ding Y, Fu MD, Xiao XR, Liu J, Zhou T (2004) Purification and characterization of sanguicin—a bacteriocin produced by Streptococcus sanguis. Sichuan Da Xue Xue Bao Yi Xue Ban 35:555–558

    PubMed  CAS  Google Scholar 

  • Dierksen KP, Tagg J (2000) Distribution of bacteriocin-producing Streptococcus salivarius within primary school populations in Dunedin, New Zealand and their influence on acquisition or carriage of Streptococcus pyogenes. In: Martin DR, Tagg J (eds) Streptococci and streptococcal diseases entering the new millennium. Securacopy, Auckland, pp 81–85

    Google Scholar 

  • Ferretti JJ, McShan WM, Ajdic D et al (2001) Complete genome sequence of an M1 strain of Streptococcus pyogenes. Proc Natl Acad Sci USA 98:4658–4663

    Google Scholar 

  • Handley PS, Carter PL, Fielding J (1984) Streptococcus salivarius strains carry either fibrils or fimbriae on the cell surface. J Bacteriol 157:64–72

    PubMed  CAS  Google Scholar 

  • Heng NCK, Burtenshaw GA, Jack RW, Tagg JR (2004) Sequence analysis of pDN571, a plasmid encoding novel bacteriocin production in M-type 57 Streptococcus pyogenes. Plasmid 52:225–229

    Article  PubMed  CAS  Google Scholar 

  • Hillman JD (1980) Replacement therapy for the control of dental caries. New Dent 10:24–27

    PubMed  CAS  Google Scholar 

  • Hyink O, Balakrishnan M, Tagg JR (2005) Streptococcus rattus strain BHT produces both a class I two-component lantibiotic and a class II bacteriocin. FEMS Microbiol Lett 252:235–241

    Article  PubMed  CAS  Google Scholar 

  • Kamiya RU, Napimoga MH, Hofling JF, Goncalves RB (2005) Frequency of four different mutacin genes in Streptococcus mutans genotypes isolated from caries-free and caries-active individuals. J Med Microbiol 54:599–604

    Article  PubMed  CAS  Google Scholar 

  • Karaya K, Shimizu T, Taketo A (2001) New gene cluster for lantibiotic streptin possibly involved in streptolysin S formation. J Biochem (Tokyo) 129:769–775

    CAS  Google Scholar 

  • Kreth J, Merritt J, Shi W, Qi F (2005) Co-ordinated bacteriocin production and competence development: a possible mechanism for taking up DNA from neighbouring species. Mol Microbiol 57:392–404

    Article  PubMed  CAS  Google Scholar 

  • Liu SL, Hessel A, Sanderson KE (1993) Genomic mapping with I-Ceu I, an intron-encoded endonuclease specific for genes for ribosomal RNA, in Salmonella spp., Escherichia coli, and other bacteria. Proc Natl Acad Sci USA 90:6874–6878

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin RE, Ferretti JJ, Hynes WL (1999) Nucleotide sequence of the streptococcin A-FF22 lantibiotic regulon: model for production of the lantibiotic SA-FF22 by strains of Streptococcus pyogenes. FEMS Microbiol Lett 175:171–177

    Article  PubMed  CAS  Google Scholar 

  • Moore A (2004) Finding my enemy’s enemies. EMBO Rep 5:754–757

    Article  PubMed  CAS  Google Scholar 

  • Morgan S, Ross RP, Hill C (1995) Bacteriolytic activity caused by the presence of a novel lactococcal plasmid encoding lactococcins A, B, and M. Appl Environ Microbiol 61:2995–3001

    PubMed  CAS  Google Scholar 

  • Piard JC, Delorme C, Novel M, Desmazeaud M, Novel G (1993) Conjugal transfer of the determinants for bacteriocin (lacticin 481) production and immunity in Lactococcus lactis subsp. lactis CNRZ 481. FEMS Microbiol Lett 112:313–318

    Article  PubMed  CAS  Google Scholar 

  • Ross KF, Ronson CW, Tagg JR (1993) Isolation and characterization of the lantibiotic salivaricin A and its structural gene salA from Streptococcus salivarius 20P3. Appl Environ Microbiol 59:2014–2021

    PubMed  CAS  Google Scholar 

  • Sanchez-Hidalgo M, Maqueda M, Galvez A, Abriouel H, Valdivia E, Martinez-Bueno M (2003) The genes coding for enterocin EJ97 production by Enterococcus faecalis EJ97 are located on a conjugative plasmid. Appl Environ Microbiol 69:1633–1641

    Article  PubMed  CAS  Google Scholar 

  • Tagg JR, Bannister LV (1979) “Fingerprinting” beta-haemolytic streptococci by their production of and sensitivity to bacteriocine-like inhibitors. J Med Microbiol 12:397–411

    Article  PubMed  CAS  Google Scholar 

  • Tagg JR, Dierksen KP (2003) Bacterial replacement therapy: adapting ‘germ warfare’ to infection prevention. Trends Biotechnol 21:217–223

    Article  PubMed  CAS  Google Scholar 

  • Tanzer JM, Kurasz AB, Clive J (1985) Competitive displacement of mutans streptococci and inhibition of tooth decay by Streptococcus salivarius TOVE-R. Infect Immun 48:44–50

    PubMed  CAS  Google Scholar 

  • Upton M, Tagg JR, Wescombe P, Jenkinson HF (2001) Intra- and interspecies signaling between Streptococcus salivarius and Streptococcus pyogenes mediated by SalA and SalA1 lantibiotic peptides. J Bacteriol 183:3931–3938

    Article  PubMed  CAS  Google Scholar 

  • Walls T, Power D, Tagg J (2003) Bacteriocin-like inhibitory substance (BLIS) production by the normal flora of the nasopharynx: potential to protect against otitis media? J Med Microbiol 52:829–833

    Article  PubMed  CAS  Google Scholar 

  • Wescombe PA, Tagg JR (2003) Purification and characterization of streptin, a type A1 lantibiotic produced by Streptococcus pyogenes. Appl Environ Microbiol 69:2737–2747

    Article  PubMed  Google Scholar 

  • Wescombe PA, Upton M, Dierksen KP, Ragland NL, Sivabalan S, Wirawan RE, Inglis MA, Moore CJ, Walker GV, Chilcott CN, Jenkinson HF, Tagg JR (2006) Production of the lantibiotic salivaricin A and its variants by oral streptococci and use of a specific induction assay to detect their presence in human saliva. Appl Environ Microbiol 72:1459–66

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Stefanie Keis and Dr John Sullivan, Department of Microbiology and Immunology, University of Otago for their assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy P. Burton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wescombe, P.A., Burton, J.P., Cadieux, P.A. et al. Megaplasmids encode differing combinations of lantibiotics in Streptococcus salivarius . Antonie van Leeuwenhoek 90, 269–280 (2006). https://doi.org/10.1007/s10482-006-9081-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-006-9081-y

Keywords

Navigation