Skip to main content
Log in

Molecular and enzymatic characterisation of extra- and intracellular laccases from the acidophilic ascomycete Hortaea acidophila

  • Short Communication
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The pigmented ascomycete Hortaea acidophila is able to grow at a pH as low as 0.6 and produces laccases that are involved in melanin synthesis. We now present data on an extracellular and an intracellular laccase which exhibit a high stability at low pH. Furthermore, the optimum for enzyme acitivity is extraordinarily low with pH 1.5 for the intracellular laccase with 2,6-dimethoxyphenol (DMOP) as substrate. Two complete laccase gene sequences of H. acidophila were amplified by inverse polymerase chain reaction (PCR). Whereas the deduced protein laccase I contains an predicted N-terminal signal sequence for protein export, laccase II does not and thus may represent the intracellular laccase. The acidophilic character of both laccases seems to be reflected in their primary structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

ABTS:

2,2′-azino-bis(3-ethyl-2,3-dihydro-1,3-benzthiazole-6-sulphonat

BCIP:

5-Brom-4-chlor-3-indolylhydrogenphos- phat

cbs:

copper binding sequence/site

DHN:

dihydroxynaphthalene

DMOP:

dimethoxyphenol

MRE:

metal responsive element

NBT:

Nitroblue tetrazolium chloride

PCR:

poylmerase chain reaction

pI:

isoelectric point

References

  • Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides – SignalP 30. J␣Mol Biol 340:783–795

    Article  PubMed  CAS  Google Scholar 

  • Berka RM, Schneider P, Golightly EJ, Brown SH, Madden M, Brown KM, Halkier T, Mondorf K, Xu F (1997) Characterization of the gene encoding an extracellular laccase of Myceliophthora thermophila and analysis of the recombinant enzyme expressed in Aspergillus oryzae. Appl Environ Microbiol 63(8):3151–3157

    PubMed  CAS  Google Scholar 

  • Butler MJ, Day AW (1998) Fungal melanins: a review. Can J Microbiol 44:1115–1136

    Article  CAS  Google Scholar 

  • Choi GH, Larson TG, Nuss DL (1992) Molecular analysis of the laccase gene from the chestnut blight fungus and selective suppression of its expression in an isogenic hypovirulent strain. Mol Plant Microbe Interact 5(2):119–128

    PubMed  CAS  Google Scholar 

  • de Hoog GS (1993) Evolution of black yeasts: possible adaptation to the human host. Stud Mycol 43: Preface

  • Dong JL, Zhang YZ (2004) Purification and characterization of two laccase isoenzymes from a ligninolytic fungus Trametes gallica. Prep Biochem Biotechnol 34(2):179–194

    Article  PubMed  CAS  Google Scholar 

  • Eckert K, Schneider E (2003) A thermoacidophilic endoglucanase (CelB) from Alicyclobacillus acidocaldarius displays high sequence similarity to arabinofuranosidases belonging to family 51 of glycoside hydrolases. Eur J Biochem 270:3593–3602

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Larrea J, Stahl U (1996) Isolation and characterization of a laccase gene from Podospora anserina. Mol Gen Genet 252:539–551

    PubMed  CAS  Google Scholar 

  • Fushinobu S, Ito K, Konno M, Wakagi T, Matsuzawa H (1998) Crystallographic and mutational analyses of an extremely acidophilic and acid-stable xylanase: biased distribution of acidic residues and importance of Asp37 for catalysis at low pH. Protein Eng 11(12):1121–1128

    Article  PubMed  CAS  Google Scholar 

  • Galhaup C, Goller S, Peterbauer CK, Strauss J, Haltrich D (2002) Characterization of the major laccase isoenzyme from Trametes pubescens and regulation of its synthesis by metal ions. Microbiology 148:2159–2169

    PubMed  CAS  Google Scholar 

  • Germann UA, Müller G, Hunziker PE, Lerch K (1988) Characterization of two allelic forms of Neurospora crassa laccase Amino- and carboxylases: a useful group of oxidoreductive enzymes. J Biol Chem 263(2):885–896

    PubMed  CAS  Google Scholar 

  • Gianfreda L, Xu F, Bollag J-M (1999) Laccases: a useful group of oxidoreductive enzymes. Biorem J 3(1):1–25

    Article  CAS  Google Scholar 

  • Hakulinen N, Kiiskinen L-L, Kruus K, Saloheimo M, Paananen A, Koivula A, Rouvinen J (2002) Crystal structure of a laccase from Melanocarpus albomyces with an intact trinuclear copper site. Nature struct Biol 8:601–605

    Google Scholar 

  • Hatamoto O, Sekine H, Nakano E, Abe K (1999) Cloning and expression of a cDNA encoding the laccase from Schizophyllum commune. Biosci Biotech Biochem 63(1):58–64

    Article  CAS  Google Scholar 

  • Hölker U, Bend J, Pracht R, Tetsch L, Müller T, de Hoog GS (2004) Hortaea acidophila, a new acidophilic black yeast from lignite. Anton van Leeuw 86:287–294

    Article  CAS  Google Scholar 

  • Hoopes JT, Dean JFT (2001) Staining electrophoretic gels for laccase and peroxidase activity using 1,8-Diaminonaphthalene. Anal Biochem 298:96–101

    Article  CAS  Google Scholar 

  • Inoue H, Nojima H, Okayama H (1990) High efficiency transformation of Escherichia coli with plasmids. Gene 96:23–28

    Article  PubMed  CAS  Google Scholar 

  • Jolivalt C, Madzak C, Brault A, Caminade E, Malosse C, Mougin C (2005) Expression of laccase IIIb from the white-rot fungus Trametes versicolor in the yeast Yarrowia lipolytica for environmental applications. Appl Microbiol Biotechnol 66:450–456

    Article  PubMed  CAS  Google Scholar 

  • Kiiskinen L-L, Saloheimo M (2004) Molecular cloning and expression in Saccharomyces cerevisiae of a laccase gene from the ascomycete Melanocarpus albomyces. Appl Environ Microbiol 70(1):137–144

    Article  PubMed  CAS  Google Scholar 

  • Kwon SI, von Dohlen CD, Anderson AJ (2001) Gene sequence analysis of an opportunistic wheat pathogen and a ligninolytic forest soil isolate of Fusarium proliferatum. Can J Bot 79:1115–1121

    Article  CAS  Google Scholar 

  • Litvintseva AP, Henson JM (2002) Cloning, characterization, and transcription of three laccase genes from Gaeumannomyces graminis var tritici, the take-all fungus. Appl Environ Microbiol 68(3):1305–1311

    Article  PubMed  CAS  Google Scholar 

  • Nagai M, Kawata M, Watanabe H, Ogawa M, Saito K, Takesawa T, Kanda K, Sato T (2003) Important role of fungal intracellular laccase for melanin synthesis: purification and characterization of an intracellular laccase from Lentinula edodes fruit bodies. Microbiology 149:2455–2462

    Article  PubMed  CAS  Google Scholar 

  • Nita-Lazar M, Wacker M, Schegg B, Amber S, Aebi M (2005) The N-X-S/T consensus sequence is required but not sufficient for bacterial N-linked protein glycosylation. Glycobiology 15(4):361–367

    Article  PubMed  CAS  Google Scholar 

  • Perry CR, Smith M, Britnell CH, Wood DA, Thurston CF (1993) Identification of two laccase genes in the cultivated mushroom Agaricus bisporus. J Gen Microbiol 139 (Pt 6):1209–1218

    Google Scholar 

  • Pilz R, Hammer E, Schauer F, Kragl U (2003) Laccase-catalysed synthesis of coupling products of phenolic substrates in different reactors. Appl Microbiol Biotechnol 60:707–712

    Google Scholar 

  • Ruel K, Burlat V, Comtat J, Moukha S, Moukha JC, Asther M, Joseleau JP (1998) Visualization of the action of ligninolytic enzymes on high-yield pulp fibers. ACS Symposium Series, American Chemical Society (Washington DC) 10:116–132

    Google Scholar 

  • Sanchez-Mirt A, Romero H, Fernandez-Zeppenfeldt G (1997) Growth and mycology of Cladophialophora (Cladosporium) carrionii. Mycol Med 7:1–4

    Google Scholar 

  • Schägger H, Jagov G (1987) Tricine-sodium dodecyl sulfate-polyacrylamid gel electrophoresis for the separation of the protein in the range from 1–100 kDa. Anal Biochem 166:368–379

    Article  PubMed  Google Scholar 

  • Schlosser D, Grey R, Fritsche W (1997) Patterns of ligninolytic enzymes in Trametes versicolor Distribution of extra- and intracellular enzyme activities during cultivation on glucose, wheat straw and beech wood. Appl Microbiol Biotechnol 47:412–418

    Article  CAS  Google Scholar 

  • Schouten A, Wagemakers L, Stefanato FL, van der Kaaij RM, van Kan JAL (2002) Resveratrol acts as a natural profungicide and induces self-intoxication by a specific laccase. Mol Microbiol 43(4):883–894

    Article  PubMed  CAS  Google Scholar 

  • Schwermann B, Pfau K, Liliensiek B, Schleyer M, Fischer T, Bakker EP (1994) Purification, properties and structural aspects of a thermoacidophilic α-amylase from Alicyclobacillus acidocaldarius atcc 27009 Insight into acidostability of proteins. Eur J Biochem 226(3):981–991

    Article  PubMed  CAS  Google Scholar 

  • Soden DM, Dobson ADW (2003) The use of amplified flanking region-PCR in the isolation of laccase promoter sequences from the edible fungus Pleurotus sajor-caju. J Appl Microbiol 95:553–562

    Article  PubMed  CAS  Google Scholar 

  • Tetsch L, Bend J, Janßen M, Hölker U (2005) Evidence for functional laccases in the acidophilic ascomycete Hortaea acidophila and isolation of laccase-specific gene fragments. FEMS Microbiol Lett 245(1):161–168

    Article  PubMed  CAS  Google Scholar 

  • Thurston CF (1994) The structure and function of fungal laccases. Microbiology 140:19–26

    Article  CAS  Google Scholar 

  • Wang X and Prusky D 2004 Metabolism of the flavonoid epicatechin by laccase of Colletotrichum gloeosporioides and its effect on pathogenicity on avocado fruits. Direct submission to NCBI

  • Xu F (1996) Oxidation of phenols, anilines, and benzenethiols by fungal laccases: correlation between activity and redox potentials as well as halide inhibition. Biochemistry 35(23):7608–7614

    Article  PubMed  CAS  Google Scholar 

  • Yang LL, Haug A (1979) Purification and partial characterization of a prokaryotic glycoprotein from the plasma membrane of Thermoplasma acidophilum. Biochim Biophys Acta 556:265–277

    Article  PubMed  CAS  Google Scholar 

  • Yurlova NA, de Hoog GS, Gerrits van den Ende AHG (1999) Taxonomy of Aureobasidium and allied genera. Stud Mycol 43:63–69

    Google Scholar 

Download references

Acknowledgements

Our thanks are due to Dr. Hans Peter Call (Übach-Palenberg) for provision of the laccase-specific antibody.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Udo Hölker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tetsch, L., Bend, J. & Hölker, U. Molecular and enzymatic characterisation of extra- and intracellular laccases from the acidophilic ascomycete Hortaea acidophila . Antonie Van Leeuwenhoek 90, 183–194 (2006). https://doi.org/10.1007/s10482-006-9064-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-006-9064-z

Keywords

Navigation