Skip to main content
Log in

Methanogenic diversity and activity in municipal solid waste landfill leachates

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Archaeal microbial communities present in municipal solid waste landfill leachates were characterized using a 16S rDNA approach. Phylogenetic affiliations of 239 partial length 16S rDNA sequences were determined. Sequences belonging to the order Methanosarcinales were dominant in the clone library and 65% of the clones belonged to the strictly acetoclastic methanogenic family Methanosaetaceae. Sequences affiliated to the metabolically versatile family Methanosarcinaceae represented 18% of the retrieved sequences. Members of the hydrogenotrophic order Methanomicrobiales were also recovered in limited numbers, especially sequences affiliated to the genera Methanoculleus and Methanofollis. Eleven euryarchaeal and thirteen crenarchaeal sequences (i.e. 10%) were distantly related to any hitherto cultivated microorganisms, showing that archaeal diversity within the investigated samples was limited. Lab-scale incubations were performed with leachates mixed with several methanogenic precursors (acetate, hydrogen, formate, methanol, methylamine). Microbial populations were followed using group specific 16S rRNA targeted fluorescent oligonucleotidic probes. During the incubations with acetate, acetoclastic methanogenesis was rapidly induced and led to the dominance of archaea hybridizing with probe MS1414 which indicates their affiliation to the family Methanosarcinaceae. Hydrogen and formate addition induced an important acetate synthesis resulting from the onset of homoacetogenic metabolism. In these incubations, species belonging to the family Methanosarcinaceae (hybridizing with probe MS1414) and the order Methanomicrobiales (hybridizing with probe EURY496) were dominant. Homoacetogenesis was also recorded for incubations with methanol and methylamines. In the methanol experiment, acetoclastic methanogenesis took place and archaea hybridizing with probe MS821 (specific for Methanosarcina spp.) were observed to be the dominant population. These results confirm that acetoclastic methanogenesis performed by the members of the order Methanosarcinales is predominant over the hydrogenotrophic and methylotrophic pathways in landfill leachates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CLSM:

Confocal Laser Scanning Microscopy

FISH:

Fluorescent in situ hybridization

rDNA:

Ribosomal Deoxyribonucleic acid

rRNA:

Ribosomal Ribonucleic acid

References

  • Altschul S.F., Madden T.L., Schaffer A.A., Zhang J.H., Zhang Z., Miller W., and Lipman D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Amann R.I. (1995). In situ identification of micro-organisms by whole cell hybridization with rRNA-targeted nucleic acid probes. In: Akkermans ADL, van Elsas JD, de Bruijn FJ (eds), Molecular Microbial Ecology Manual. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 33.6/1–3.3.6/15

    Google Scholar 

  • Amann R.I., Krumholz L., and Stahl D.A. (1990). Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J. Bacteriol. 172, 762–770

    PubMed  CAS  Google Scholar 

  • Amann R.I., Ludwig W., and Schleifer K.-H. (1995). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143–169

    PubMed  CAS  Google Scholar 

  • Burggraf S., Mayer T., Amann R., Schadhauser S., Woese C.R., and Stetter K.O. (1994). Identifying members of the domain Archaea with rRNA-targeted oligonucleotide probes. Appl. Environ. Microbiol. 60, 3112–3119

    PubMed  CAS  Google Scholar 

  • Chen A.C., Imachi H., Sekiguchi Y., Ohashi A., and Harada H. (2003a). Archaeal community compositions at different depths (up to 30 m) of a municipal solid waste landfill in Taiwan as revealed by 16S rDNA cloning analyses. Biotechnol. Lett. 25, 719–724

    Article  CAS  Google Scholar 

  • Chen A.C., Ohashi A., and Harada H. (2003b). Acetate synthesis from H-2/CO2 in simulated and actual landfill samples. Environ. Technol. 24, 435–443

    Article  Google Scholar 

  • Chen A.C., Ueda K., Sekiguchi Y., Ohashi A., and Harada H. (2003c). Molecular detection and direct enumeration of methanogenic Archaea and methanotrophic Bacteria in domestic solid waste landfill soils. Biotechnol. Lett. 25, 1563–1569

    Article  CAS  Google Scholar 

  • Daims H., Bruhl A., Amann R., Schleifer K.H., and Wagner M. (1999). The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: Development and evaluation of a more comprehensive probe set. Syst. Appl. Microbiol. 22, 434–444

    PubMed  CAS  Google Scholar 

  • Diaz L.F. (1999). Landfill bioreactor design & operation. Waste Manage. Res. 17, 246–247

    Article  Google Scholar 

  • Drake H.L., Kusel K., and Matthies C. (2002). Ecological consequences of the phylogenetic and physiological diversities of acetogens. Antonie Van Leeuwenhoek International Int. J. General Mol. Microbiol. 81, 203–213

    Article  CAS  Google Scholar 

  • European Environment Agency E. 2003. Europe’s Environment: The Third Assessment, European Environment Agency, Copenhagen, p. 344

  • Garcia J.L., Patel B.K.C., and Ollivier B. (2000). Taxonomic phylogenetic and ecological diversity of methanogenic Archaea. Anaerobe 6, 205–226

    Article  CAS  PubMed  Google Scholar 

  • Huang L.N., Chen Y.Q., Zhou H., Luo S., Lan C.Y., and Qu L.H. (2003). Characterization of methanogenic Archaea in the leachate of a closed municipal solid waste landfill. FEMS Microbiol. Ecol. 46, 171–177

    Article  CAS  Google Scholar 

  • Huang L.N., Zhou H., Chen Y.Q., Luo S., Lan C.Y., and Qu L.H. (2002). Diversity and structure of the archaeal community in the leachate of a full-scale recirculating landfill as examined by direct 16S rRNA gene sequence retrieval. FEMS Microbiol. Lett. 214, 235–240

    PubMed  CAS  Google Scholar 

  • Huber H., Hohn M.J., Rachel R., Fuchs T., Wimmer V.C., and Stetter K.O. (2002). A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature 417, 63–67

    Article  PubMed  CAS  ADS  Google Scholar 

  • Hugenholtz P., Goebel B.M., and Pace N.R. (1998). Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol. 180, 4765–4774

    PubMed  CAS  Google Scholar 

  • Jurgens G., Glockner F.O., Amann R., Saano A., Montonen L., Likolammi M., and Munster U. (2000). Identification of novel Archaea in bacterioplankton of a boreal forest lake by phylogenetic analysis and fluorescent in situ hybridization. FEMS Microbiol. Ecol. 34, 45–56

    PubMed  CAS  Google Scholar 

  • Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S., Jobb G., Forster W., Brettske I., Gerber S., Ginhart A.W., Gross O., Grumann S., Hermann S., Jost R., Konig A., Liss T., Lussmann R., May M., Nonhoff B., Reichel B., Strehlow R., Stamatakis A., Stuckmann N., Vilbig A., Lenke M., Ludwig T., Bode A., and Schleifer K.H. (2004). ARB: a software environment for sequence data. Nucleic Acids Res. 32, 1363–1371

    Article  PubMed  CAS  Google Scholar 

  • Maidak B.L., Cole J.R., Parker C.T., Jr., Garrity G.M., Larsen N., Li B., Lilburn T.G., McCaughey M.J., Olsen G.J., Overbeek R., Pramanik S., Schmidt T.M., Tiedje J.M., and Woese C.R. (1999). A new version of the RDP (Ribosomal Database Project). Nucleic Acids Res. 27, 171–173

    Article  PubMed  CAS  Google Scholar 

  • Manz W., Amann R., Ludwig W., Wagner M., and Schleifer K.H. (1992). Phylogenetic oligodeoxynucleotide probes for the major subclasses of Proteobacteria: problems and solutions. System. Appl. Microbiol. 15, 593–600

    Google Scholar 

  • Mori K., Sparling R., Hatsu M., and Takamizawa K. (2003). Quantification and diversity of the archaeal community in a landfill site. Can. J. Microbiol. 49, 28–36

    Article  PubMed  CAS  Google Scholar 

  • Pohland F.G. (1980). Leachate recycle as a landfill management option. J. Environ. Eng. 106, 1057–1069

    CAS  Google Scholar 

  • Raskin L., Stromley J.M., Rittmann B.E., and Stahl D.A. (1994). Group-specific 16S rRNA hybridization probes to describe natural communities of methanogens. Appl. Environ. Microbiol. 60, 1232–1240

    PubMed  CAS  Google Scholar 

  • Reinhart D.R., McCreanor P.T., and Townsend T. (2002). The bioreactor landfill: Its status and future. Waste Manage. Res. 20, 172–186

    Article  CAS  Google Scholar 

  • Stahl D.A. and Amann R. (1991). Development and application of nucleic acid probes. In: Stackebrandt E. and Goodfellow M. (eds), Nucleic Acid Techniques in Bacterial Systematics, pp. 205–248

  • Uz I., Rasche M.E., Townsend T., Ogram A.V., and Lindner A.S. (2003). Characterization of methanogenic and methanotrophic assemblages in landfill samples. Proc. R. Soc. Lond. Ser. B-Biol. Sci. 270, S202–S205

    Google Scholar 

  • Wintzingerode F.v., Göbel U.B., and Stackebrandt E. (1997). Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. Fems Microbiol. Rev. 21, 213–229

    Google Scholar 

Download references

Acknowledgements

This work was conducted on the MIMOSE experimental platform and was funded by Région Ile de France. The authors would like to thank Nancy Mailly for her excellent technical assistance as well as the two landfill managers who helped us to sample leachate.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Théodore Bouchez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laloui-Carpentier, W., Li, T., Vigneron, V. et al. Methanogenic diversity and activity in municipal solid waste landfill leachates. Antonie Van Leeuwenhoek 89, 423–434 (2006). https://doi.org/10.1007/s10482-005-9051-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-005-9051-9

Key words:

Navigation