Skip to main content
Log in

Differentiation and protease production in Micromonospora echinospora (ATCC 15837)

  • Short communication
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Micromonospora echinospora differentiates in both submerged and surface cultures producing abundant dark spores after a period of vegetative mycelial growth. In submerged batch cultures, under either carbon or nitrogen limiting conditions, protease activity was found to coincide with sporulation indicating a relationship between proteolytic activity and differentiation in this organism. Further evidence for this link was provided from surface grown cultures wherein sporulation was inhibited by the serine protease inhibitors TLCK and TPCK. The association between proteolysis and differentiation apparent in this organism correlates with evidence of a similar phenomenon observed in the streptomycetes, suggesting that this may be a common response associated with differentiation in filamentous actinomycetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Bradford M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254

    Article  PubMed  CAS  Google Scholar 

  • Brock F.M., Forsberg C.W., Buchanan-Smith J.G. (1982). Proteolytic activity of rumen microorganisms and effects of proteinase inhibitors. Appl. Env. Microbiol. 44: 561–569

    PubMed  CAS  Google Scholar 

  • Butler M.J., Aphale J.S., Binnie C., Di Zonno M.A., Krygsman P., Soltes G., Walczyk E., Malek L.T. (1996). Cloning and analysis of a gene from Streptomyces lividans 66 encoding a novel secreted protease exhibiting homology to subtilisn BPN. App. Micro. Biotech. 45: 141–147

    Article  PubMed  CAS  Google Scholar 

  • Dunn B.M. 1989. Dertermination of protease mechanism. In: R.J. Beynon and Bond J.S. (eds.), Proteolytic Enzymes: A Practical Approach, Oxford University Press, Oxford

  • Fernandez M., Sanchez J. (2004) Nuclease activities and cell death processes associated with the development of surface cultures of Streptomyces antibioticus ETH 7451. Microbiology 148: 405–12

    Google Scholar 

  • Gibb G.D., Strohl W.R. (1987). Physiological regulation of Protease activity in Streptomyces peucetius. Can. J. Microbiol. 34: 187–190

    Article  Google Scholar 

  • Ginter C.L. (1978). Sporulation and the production of serine protease and cephamicin C by Streptomyces lacamadurans. Antimicrob. Agents Chemother. 15: 522–526

    Google Scholar 

  • Gottesman S. (1999). Regulation by proteolysis: Developmental switches. Curr. Op. Microbiol. 2: 142–147

    Article  PubMed  CAS  Google Scholar 

  • Hoskisson P.A., Hobbs G., Sharples G.P. (2000). Sensitivity of Micromonospora echinospora (NCIMB 12744) spores to heat treatment with further evidence of a heat activation phenomenon. Lett. App. Micro. 30, 114–117

    Article  PubMed  CAS  Google Scholar 

  • Hoskisson P.A. 2002. Growth, Development and Antibiotic production in Micromonospora echinospora (ATCC15837). Ph.D Thesis, Liverpool John Moores University

  • Hoskisson P.A., England R.R., Sharples G.P., Hobbs G. (2004). Modulation of glycogen and trehalose levels in Micromonospora echinospora (ATCC 15837). Antonie van Leeuwenhoek, 86, 225–233

    Article  PubMed  CAS  Google Scholar 

  • Kang S.G., Kim I.S., Rho Y.T., Lee K.J. (1995). Production of extracellular proteases accompanying morphological differentiation of Streptomyces albidoflavus SMF301. Microbiology 141: 3095–3103

    CAS  Google Scholar 

  • Kato J.Y., Chi W.J., Ohnishi Y., Hong S.K., Horinouchi S. (2005) Transcriptional control by A-factor of two trypsin genes in Streptomyces griseus. J Bacteriol. 187: 286–95

    Article  PubMed  CAS  Google Scholar 

  • Kieser T., Bibb M.J., Buttner M.J., Chater K.F., Hopwood D.A. (2000).Practical Streptomyces genetics. John Innes foundation. Norwich

    Google Scholar 

  • Kim I.S., Lee K.J. (1996). Trypsin-like protease of Streptomyces exfoliatus SMF13, a potential agent in mycelial differentiation. Microbiology 142: 1797–1806

    Article  PubMed  CAS  Google Scholar 

  • Miguelez E.M., Hardisson C., Manzanal M.B. (1999). Hyphal death during colony development in Streptomyces antibioticus: morphological evidence for the existence of a process of cell deletion in a multicellular prokaryote. J Cell Biol. 145: 515–25

    Article  PubMed  CAS  Google Scholar 

  • Nicieza RG, Huergo J, Connolly BA, Sanchez J (1999). Purification, characterization, and role of nucleases and serine proteases in Streptomyces differentiation. Analogies with the biochemical processes described in late steps of eukaryotic apoptosis. J Biol Chem. 274: 20366–75

    Article  PubMed  CAS  Google Scholar 

  • Ochi K. (1985). Sporulation and antibiotic production by Bacillus subtilis mutants defective in intracellular proteases. Agric. Biol. Chem., 49, 905–907

    CAS  Google Scholar 

  • Piggot P.J., Coote J.G. (1976). Genetic aspects of bacterial endospore formation. Bact. Rev. 40: 908–962

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. Hoskisson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoskisson, P.A., Sharples, G.P. & Hobbs, G. Differentiation and protease production in Micromonospora echinospora (ATCC 15837). Antonie Van Leeuwenhoek 89, 191–195 (2006). https://doi.org/10.1007/s10482-005-9001-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-005-9001-6

Key words

Navigation