Skip to main content
Log in

Investigation of bacterial diversity in Brazilian tropical estuarine sediments reveals high actinobacterial diversity

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Phylogenetic and statistical analyses of 16S rRNA gene libraries were used for the investigation of actinobacterial communities present in two tropical estuarine sediments (Santos-São Vicente estuary, Brazil). The libraries were constructed from samples collected at the brackish end of the estuary, highly hydrocarbon-contaminated, and at the marine end, uncontaminated. Clones from the marine end of the estuary were all related to sequences from non-cultured Actinobacteria and unidentified bacteria recovered from a wide range of environmental samples, whereas clones from the brackish end were mainly related to sequences from cultured Actinobacteria. Statistical analyses showed that the community recovered from the hydrocarbon-contaminated sediment sample, at the brackish end, was less diverse than the uncontaminated one, at the marine end, and that the communities from the two libraries were differently structured, suggesting that these may have not originated from the same community. The recognition of the spatial pattern of actinobacterial distribution in a natural environment is a first step towards understanding the way these communities are organized, providing valuable data for further investigations of their taxonomic and functional diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amann R.I., Ludwig W. and Schleifer K. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59: 143–169.

    PubMed  CAS  Google Scholar 

  • Anon. 1991. Determinations of petroleum hydrocarbons in sediments. Reference methods for marine pollution studies no 20. UNEP (United Nations Environment Programme).

  • Anon. 1999. Canadian Sediment Quality Guidelines for the protection of Aquatic Life. Summary Tables., Environment Canada.

  • Anon. 2001. Sistema Estuarino Santos-São Vicente. Relatório Técnico. CETESB, São Paulo.

  • Anon. 1985. NRC (National Research Council). Oil in the sea, inputs, fates and effects. National Academy Press, Washington D.C., USA.

  • Atlas R.M., Horowitz A., Krichevsky M. and Bej A.K. 1991. Response of microbial populations to environmental disturbance. Microb. Ecol. 22: 249–256.

    Google Scholar 

  • Bell K.S., Philp J.C., Aw D.W. and Christofi N. 1998. The genus Rhodococcus. J. Appl. Microbiol. 85(2): 195–210.

    PubMed  CAS  Google Scholar 

  • Benson D.A. et al. 2002. GenBank. Nucleic Acids Res. 30: 17–20.

    PubMed  CAS  Google Scholar 

  • Bond P.L., Hugenholtz P., Keller J. and Blackall L.L. 1995. Bacterial community structures of phosphate-removing and non-phosphate-removing activated sludges from sequencing batch reactors. Appl. Environ. Microbiol. 61: 1910–1916.

    PubMed  CAS  Google Scholar 

  • Bonnet R., Suau A., Dore J., Gibson G.R. and Collins M.D., 2002. Differences in rDNA libraries of faecal bacteria derived from 10- and 25-cycle PCRs. Int. J. Syst. Evol. Microbiol. 52(Pt3): 757–763.

    PubMed  CAS  Google Scholar 

  • Bowman J.P. and McCuaig R.D. 2003. Biodiversity, community structural shifts, and biogeography of prokaryotes within antarctic continental shelf sediments. Appl. Environ. Microbiol. 69: 2463–2483.

    PubMed  CAS  Google Scholar 

  • Cheung P.Y. and Kinkle B.K., 2001. Mycobacterium diversity and pyrene mineralization in petroleum-contaminated soils. Appl. Environ. Microbiol. 67(5): 2222–2229.

    PubMed  CAS  Google Scholar 

  • Colquhoun J.A. et al. 1998. Taxonomy and biotransformation ac-tivities of some deep-sea actinomycetes. Extremophiles 2(3): 269–277.

    PubMed  CAS  Google Scholar 

  • Dojka M.A., Hugenholtz P., Haack S.K. and Pace N.R., 1998. Microbial diversity in a hydrocarbon- and chlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation. Appl. Environ. Microbiol. 64(10): 3869–3877.

    PubMed  CAS  Google Scholar 

  • Ewing B., Hillier L., Wendl M. and Green P. 1998. Basecalling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res. 8: 175–185.

    PubMed  CAS  Google Scholar 

  • Farreley V., Rainey F.A. and Stackebrandt E., 1995. Effect of genome size and rrn gene copy number on PCR amplification of 16S rRNA genes from a mixture of bacterial species. Appl. Environ. Microbiol. 61: 2798–2801.

    Google Scholar 

  • Farrington J. and Tripp R.W., 1975. Hydrocarbons in cores of northwestern Atlantic coastal and continental margin sediments. Estuar. Coast. Mar. Sci. 5: 793–808.

    Google Scholar 

  • Felske A., Rheims H., Wolterink A., Stackebrandt E. and Akkermans A.D.L. 1997. Ribosome analysis reveals prominent activity of an uncultured member of the class Actinobacteria in grassland soils. Microbiology 143: 2983–2989.

    Article  PubMed  CAS  Google Scholar 

  • Fulthorpe R.R., Rhodes A.N. and Tiedje J.M. 1998. High levels of endemicity of 3-chlorobenzoate-degrading soil bacteria. Appl. Environ. Microbiol. 64: 1620–1627.

    PubMed  CAS  Google Scholar 

  • Gray J.P. and Herwig R.P. 1996. Phylogenetic analysis of the bacterial communities in marine sediments. Appl. Environ. Microbiol. 62(11): 4049–4059.

    PubMed  CAS  Google Scholar 

  • Greene E.A., Kay J.G., Jaber K., Stehmeier L.G. and Voordouw G. 2000. Composition of soil microbial communities enriched on a mixture of aromatic hydrocarbons. Appl. Environ. Microbiol. 66(12): 5282–5289.

    PubMed  CAS  Google Scholar 

  • Grifoll M., Casellas M., Bayona J.M. and Solanas A.M. 1992. Isolation and characterization of a fluorene-degrading bacterium: identification of ring oxidation and ring fission products. Appl. Environ. Microbiol. 58(9): 2910–2917.

    PubMed  CAS  Google Scholar 

  • Head I.M., Saunders J.R. and Pickup R.W. 1998. Microbial Evolution, Diversity, and Ecology: A Decade of Ribosomal RNA Analysis of Uncultivated Microorganisms. Microb. Ecol. 35(1): 1–21.

    PubMed  CAS  Google Scholar 

  • Heuer H., Krsek M., Baker P., Smalla K. and Wellington E.M. 1997. Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl. Environ. Microbiol. 63(8): 3233–3241.

    PubMed  CAS  Google Scholar 

  • Hugenholtz P., Goebel B.M. and Pace N.R., 1998. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol. 180(18): 4765–4774.

    PubMed  CAS  Google Scholar 

  • Hughes J.B., Hellmann J.J., Ricketts T.H. and Bohannan B.J.M. 2001. Counting the uncountable: statistical approaches to estimating microbial diversity. Appl. Environ. Microbiol. 67: 4399–4406.

    PubMed  CAS  Google Scholar 

  • Ilori M.O.N. and Amund D.- I. 2000. Degradation of anthracene by bacteria isolated from oil polluted tropical soils. Z. Naturforsch. 55: 890–897.

    CAS  Google Scholar 

  • Jensen P.R., Dwight R. and Fenical W. 1991. Distribution of actinomycetes in near-shore tropical marine sediments. Appl. Environ. Microbiol. 57(4): 1102–1108.

    PubMed  CAS  Google Scholar 

  • Kanaly R.A. and Harayama S. 2000. Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. J. Bacteriol. 182: 2059–2067.

    PubMed  CAS  Google Scholar 

  • Kästner M., Breuer-Jammali M. and Mahro B. 1994. Enumeration and characterization of the soil microflora from hydrocarbon-contaminated soil sites able to mineralize polycyclic aromatic hydrocarbons (PHA). Appl. Microbiol. Biotechnol. 41: 267–273.

    Google Scholar 

  • Kelley I. and Cerniglia C.E., 1995. Degradation of a mixture of high-molecular-weight polycyclic aromatic hydrocarbons by a Mycobacterium strain PYR-1. J. Soil Contam. 74: 77–91.

    Google Scholar 

  • Lane D. 1991. 16S/23S rRNA sequencing.. In: Stackebrandt E. and Goodfellow M. (eds), Nucleic Acid Techniques in Bacterial Systematics. West Sussex, England, 115–175.

    Google Scholar 

  • Lang E. 1996. Diversity of Bacterial capabilities in utilizing alkylated benzenes and other aromatic compounds. Lett. Appl. Microbiol. 23: 257–260.

    PubMed  CAS  Google Scholar 

  • Levin S.A. 1992. The problem of pattern and scale in ecology. Ecology 73: 1943–1967.

    Google Scholar 

  • Lindstrom J.E., Barry R.P. and Braddock J.F. 1999. Long-term effect on microbial communities after a subartic oil spill. Soil Biol. Biochem. 31: 1677–1689.

    CAS  Google Scholar 

  • Maidak B.L. et al. 2001. The RDP-II (Ribosomal Database Project). Nucleic Acids Res 29(1): 173–174.

    Article  CAS  PubMed  Google Scholar 

  • Manly B.F.J. 1997. Randomization. In Randomization, Bootstrap and Monte Carlo Methods in Biology. Chapman and Hall, Glasglow, UK, 1–23.

    Google Scholar 

  • Martin A.P. 2002. Phylogenetic approaches for describing and comparing the diversity of microbial communities. Appl. Environ. Microbiol. 68: 3673–3682.

    PubMed  CAS  Google Scholar 

  • Mincer T.J., Jensen P.R., Kauffman C.A. and Fenical W. 2002. Widespread and persistent populations of a major new marine actinomycete taxon in ocean sediments. Appl. Environ. Microbiol. 68(10): 5005–5011.

    PubMed  CAS  Google Scholar 

  • Miskin I.P., Farrimond P. and Head I.M. 1999. Identification of novel bacterial lineages as active members of microbial populations in a freshwater sediment using a rapid RNA extraction procedure and RT-PCR. Microbiology 145 (Pt8): 1977–1987.

    Article  PubMed  CAS  Google Scholar 

  • Moran M.A., Rutherford L.T. and Hodson R.E. 1995. Evidence for indigenous Streptomyces populations in a marine environment determined with a 16S rRNA probe. Appl. Environ. Microbiol. 61(10): 3695–3700.

    PubMed  CAS  Google Scholar 

  • Nogales B., Moore E.R., Abraham W.R. and Timmis K.N., 1999. Identification of the metabolically active members of a bacterial community in a polychlorinated biphenyl-polluted moorland soil. Environ. Microbiol. 1(3): 199–212.

    PubMed  CAS  Google Scholar 

  • Nogales B. et al. 2001. Combined use of 16S ribosomal DNA and 16S rRNA to study the bacterial community of polychlorinated biphenyl-polluted soil. Appl. Environ. Microbiol. 67(4): 1874–1884.

    PubMed  CAS  Google Scholar 

  • Pellizari V.H., Bezborodnikov S., Quensen J.F. 3rd and Tiedje J.M. 1996. Evaluation of strains isolated by growth on naphthalene and biphenyl for hybridization of genes to dioxygenase probes and polychlorinated biphenyl-degrading ability. Appl. Environ. Microbiol. 62(6): 2053–2058.

    PubMed  CAS  Google Scholar 

  • Polz M.F. and Cavanaugh C.M. 1998. Bias in template-to-product ratios in multitemplate PCR. Appl. Environ. Microbiol. 64(10): 3724–3730.

    PubMed  CAS  Google Scholar 

  • Rao C.R. 1980. Diversity and dissimilarity coefficients: a unified approach. Theor. Pop. Biol. 21: 24–43.

    Google Scholar 

  • Rodrigues D.F. 2002. Caracterização polifásica da biodiversidade de isolados degradadores de poluentes xenobióticos na baixada santista. MSc Thesis Thesis, University of São Paulo (USP), São Paulo.

    Google Scholar 

  • Schwarz K., Hansen-Hagge T. and Batram C. 1990. Improved yields of long PCR products using gene 32 protein. Nucleic Acids Res. 18: 1079.

    PubMed  CAS  Google Scholar 

  • Shi S. et al. 1999. Molecular analysis of microbial community structures in pristine and contaminated aquifers: field and laboratory microcosms experiments. Appl. Environ. Microbiol. 65: 2143–2150.

    PubMed  CAS  Google Scholar 

  • Singleton D.R., Furlong M.A., Rathbun S.L. and Whitman W.B. 2001. Quantitative comparisons of 16S rRNA gene sequence libraries form environmental samples. Appl. Environ. Microbiol. 67: 4374–4376.

    PubMed  CAS  Google Scholar 

  • Stach J.E.M. et al. 2003. Statistical approaches for estimating actinobacterial diversity in marine sediments. Appl. Environ. Microbiol. 69: 6189–6200.

    PubMed  CAS  Google Scholar 

  • Stackebrandt E. and Goebel B.M. 1994. Taxonomic note: a place for DNA:DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. System. Bacteriol. 44: 846–849.

    Article  CAS  Google Scholar 

  • Suzuki M.T. and Giovannoni S.J. 1996. Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl. Environ. Microbiol. 62: 625–630.

    PubMed  CAS  Google Scholar 

  • Swofford D.L. 2000. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Sunderland, Massachusetts, USA.

    Google Scholar 

  • Telles G.P. and Silva F.R, 2001. Trimming and clustering sugarcane ESTs. Gen. Mol. Biol. 24: 17–23.

    CAS  Google Scholar 

  • Thompson J.D., Higgins D.J. and Gibson T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673–4680.

    CAS  PubMed  Google Scholar 

  • Torsvik V., Goksoyr J. and Daae F.L. 1990. High diversity in DNA of soil bacteria. Appl. Environ. Microbiol. 56: 782–787.

    PubMed  CAS  Google Scholar 

  • Urakawa H., Kita-Tsukamoto K. and Ohwada K. 1999. Microbial diversity in marine sediments from Sagami Bay and Tokyo Bay, Japan, as determined by 16S rRNA gene analysis. Microbiology 145: 3305–3015.

    PubMed  CAS  Google Scholar 

  • van Elsas J.D. and Smalla K. 1995. Extraction of microbial community DNA from soils.. In: Akkerman A.D., van Elsas J.D. and Bruijn F.J. (eds), Molecular Microbial Ecology Manual. Kluwer Academic Publishers, Dordrecht, Netherlands, 1–11.

    Google Scholar 

  • Volkman J.K., Holdsworth G.D., Neill G.P. and Bavor H.J.J. 1992. Identification of natural, anthropogene and petroleum hydrocarbons in aquatic sediments. Sci. Total Environ. 112: 203–219.

    PubMed  CAS  Google Scholar 

  • Wagner A. et al. 1994. Surveys of gene families using polymerase chain reaction: PCR selection and PCR drift. Syst. Biol. 43: 250–261.

    Google Scholar 

  • Wagner-Dobler I. et al. 1998. Microcosm enrichment of biphenyl-degrading microbial communities from soils and sediments. Appl. Environ. Microbiol. 64(8): 3014–3022.

    PubMed  CAS  Google Scholar 

  • Watve M.G. and Gangal R.M. 1996. Problems in measuring bacterial diversity and a possible solution. Appl. Environ. Microbiol. 62: 4299–4301.

    PubMed  CAS  Google Scholar 

  • Wintzingerode F.V., Göbel U.B. and Stackebrandt E. 1997. Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol. Rev. 21: 213–229.

    Google Scholar 

  • Wright S. 1978. Genetic variability in natural populations: methods. In Evolution and the genetics of populations. The University of Chicago Press, Chicago, USA,, 79–103.

    Google Scholar 

  • Yumoto I. et al. 2002. Dietzia psychralcaliphila sp. nov., a novel, facultatively psychrophilic alkaliphile that grows on hydrocarbons. Int. J. Syst. Evol. Microbiol. 52(Pt 1): 85–90.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernanda Francischetti Piza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piza, F.F., Prado, P.I. & Manfio, G.P. Investigation of bacterial diversity in Brazilian tropical estuarine sediments reveals high actinobacterial diversity. Antonie Van Leeuwenhoek 86, 317–328 (2005). https://doi.org/10.1007/s10482-005-0162-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-005-0162-0

Key words

Navigation