Skip to main content
Log in

A constrained integrated imperfect manufacturing-inventory system with preventive maintenance and partial backordering

  • Original Paper
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In this paper, a multi-product single-machine economic production quantity model with preventive maintenance, scraped and rework is studied. Shortages are permitted and a fraction of them is backlogged. Capacity and service level are limitations of the production system. It is assumed that preventive maintenance can be performed when the inventory level is positive or negative. Indeed two different scenarios are modeled and according to the comparisons between their costs, a new scenario according to the best time of preventive maintenance is investigated and modeled. The aim of this research is to determine the best time for preventive maintenance, production and back-ordered quantities of each item and common cycle length, such that the expected total cost is minimized. The objective function of the final proposed model is proved to be convex and closed-form optimal solutions are derived. Two numerical examples based on a real application of the proposed model in a turning manufactory with only one computer numerical control machine applied to lathe metal plates to different sizes are used to illustrate the applicability of extended model and proposed solution method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abboud, N. E. (1997). A simple approximation of the EMQ model with Poisson machine failures. Production Planning and Control, 8(4), 385–397.

    Article  Google Scholar 

  • Aryanezhad, M. B., Noorollahi, E., Karimi-Nasab, M., & Ghoreyshi, S. M. (2010). Batch sizing with random yield and imperfect inspection and process compressibility. In 40th International conference on computers and industrial engineering: Soft computing techniques for advanced manufacturing and service systems, CIE40 2010, Art. No. 5668221.

  • Berg, M., Posner, M. J. M., & Zhao, H. (1994). Production–inventory systems with unreliable machines. Operations Research, 42, 111–118.

    Article  Google Scholar 

  • Bielecki, T., & Kumar, P. R. (1988). Optimality of zero-inventory policies for unreliable production facility. Operations Research, 36, 532–541.

    Article  Google Scholar 

  • Bijari, M., Barzoki, M. R., & Jahanbazi, M. (2007). Effects of imperfect products and rework on lot sizing with work in process inventory. In IIE annual conference and Expo 2007—Industrial engineering’s critical role in a flat world—conference proceedings, pp 919-925.

  • Cárdenas-Barrón, L. E. (2008). Optimal manufacturing batch size with rework in a single-stage production system—A simple derivation. Computers and Industrial Engineering Journal, 55, 758–765.

    Article  Google Scholar 

  • Cárdenas-Barrón, L. E. (2009). Economic production quantity with rework process at a single-stage manufacturing system with planned backorders. Computers and Industrial Engineering Journal, 57, 1105–1113.

    Article  Google Scholar 

  • Chakrabarty, S., & Rao, N. V. (1988). EBQ for a multi stage production system considering rework. Opsearch, 25, 75–88.

    Google Scholar 

  • Chan, W. M., Ibrahim, R. N., & Lochert, P. B. (2003). A new EPQ model: Integrating lower pricing, rework and reject situations. Production Planning and Control, 14, 588–595.

    Article  Google Scholar 

  • Chen, K. K., Chiu, Y. S. P., & Hwang, M. H. (2010a). Integrating a cost reduction delivery policy into an imperfect production system with repairable items. International Journal of the Physical Sciences, 5(13), 2030–2037.

    Google Scholar 

  • Chen, K. K., Chiu, Y. S. P., & Ting, C. K. (2010b). Producer’s replenishment policy for an EPQ model with rework and machine failure taking place in backorder reloading time. WSEAS Transactions on Information Science and Applications, 4, 223–233.

    Google Scholar 

  • Cheng, F. T., Chang, H. H., & Chiu, S. W. (2010c). Economic production quantity model with backordering. Rework and machine failure taking place in stock piling time. WSEAS Transactions on Information Science and Applications, 4, 463–473.

    Google Scholar 

  • Chiu, Y. P. (2003). Determining the optimal lot size for the finite production model with random defective rate, the rework process, and backlogging. Engineering Optimization, 35, 427–437.

    Article  Google Scholar 

  • Chiu, S. W. (2007a). Robust planning in optimization for production system subject to random machine breakdown and failure in rework. Computers and Operations Research, 37, 899–908.

    Article  Google Scholar 

  • Chiu, S. W. (2007b). Optimal replenishment policy for imperfect quality EMQ model with rework and backlogging. Applied Stochastic Models in Business and Industry., 23, 165–178.

    Article  Google Scholar 

  • Chiu, S. W. (2008). Production lot size problem with failure in repair and backlogging derived without derivatives. European Journal of Operational Research, 188, 610–615.

    Article  Google Scholar 

  • Chiu, Y. S. P., Chen, K. K., Cheng, F. T., & Wu, M. F. (2010a). Optimization of the finite production rate model with scrap, rework and stochastic machine breakdown. Computers and Mathematics with Applications, 59, 919–932.

    Article  Google Scholar 

  • Chiu, S. W., Cheng, C. B., Wu, M. F., & Yang, J. C. (2010b). An algebraic for determining the optimal lot size for EPQ model with rework process. Mathematical and Computational Applications, 15, 364–370.

    Article  Google Scholar 

  • Chiu, Y. S. P., Chen, K. K., & Ting, C. K. (2012). Replenishment run time problem with machine breakdown and failure in rework. Expert Systems with Applications, 39, 1291–1297.

    Article  Google Scholar 

  • Chiu, S. W., & Chiu, Y. S. P. (2006). Mathematical modeling for production system with backlogging and failure in repair. Journal of Scientific and Industrial Research, 65, 499–506.

    Google Scholar 

  • Chiu, S. W., Chiu, Y. P., & Wu, B. P. (2003). An economic production quantity model with the steady production rate of scrap items. The Journal of Chaoyang University of Technology, 8, 225–235.

    Google Scholar 

  • Chiu, S. W., Gong, D. C., Chiu, C. L., & Chung, C. L. (2011a). Joint determination of the production lot size and number of shipments for EPQ model with rework. Mathematical and Computational Applications, 16, 317–328.

    Article  Google Scholar 

  • Chiu, S. W., Gong, D. C., & Wee, H. M. (2004). Effects of random defective rate and imperfect rework process on economic production quantity model. Japan Journal of Industrial and Applied Mathematics, 21, 375–389.

    Article  Google Scholar 

  • Chiu, Y. S. P., Lin, H. D., & Chang, H. H. (2011b). Mathematical modeling for solving manufacturing run time problem with defective rate and random machine breakdown. Computers and Industrial Engineering, 60, 576–584.

    Article  Google Scholar 

  • Chiu, S. W., Wang, S. L., & Chiu, S. Y. P. (2007). Determining the optimal run time for the EPQ model with scrap, rework, and stochastic breakdowns. European Journal of Operations Research, 180, 664–676.

    Article  Google Scholar 

  • Chiu, S. W., Yang, J. C., & Kuo, S. Y. C. (2008). Manufacturing Lot-sizing with backordering, scrap, and random breakdown occurring in inventory-stacking period. WSEAS Transactions in Mathematics, 4(7), 183–194.

    Google Scholar 

  • Chung, K. J. (1997). Bounds for production lot sizing with machine breakdowns. Computers and Industrial Engineering, 32, 139–144.

    Article  Google Scholar 

  • Chung, K. J. (2003). Approximations to production lot sizing with machine breakdowns. Computers and Operations Research, 30, 1499–1507.

    Article  Google Scholar 

  • Freimer, M., Thomas, D., & Tyworth, J. (2006). The value of setup cost reduction and process improvement for the economic production quantity model with defects. European Journal of Operational Research, 173, 241–251.

    Article  Google Scholar 

  • Goyal, S. K., & Cárdenas-Barrón, L. E. (2005). Economic production quantity with imperfect production system. Industrial Engineering Journal, 34, 33–36.

    Google Scholar 

  • Haji, B., Haji, R., & Ghayoor, Z. (2007). Economic batch quantity with setup time for immediate and delayed rework. In IIE annual conference and Expo 2007–industrial engineering’s critical role in a flat world—conference proceedings (pp. 1666–1671).

  • Haji, B., Haji, A., & Haji, R. (2009a). Optimal batch production with minimum rework cycles and constraint on accumulated defective units. In 2009 IEEE/INFORMS international conference on service operations, logistics and informatics, SOLI 2009, Art. no. 5204011 (pp. 633–638).

  • Haji, B., Haji, R. and Haji, A. (2009b). Optimal batch production with rework and non-zero setup cost for rework. In International conference on computers and industrial engineering, Paris, France (pp. 857–862).

  • Haji, A., & Haji, B. (2010). Optimal batch production for a single machine system with accumulated defectives and random rate of rework. Journal of Industrial and Systems Engineering, 3, 243–256.

    Google Scholar 

  • Haji, B., Haji, A., & Rahmati, Tavakol A. (2008a). Scheduling accumulated rework in a normal cycle: Optimal batch production with minimum rework cycles. Journal of Industrial and Systems Engineering, 2, 236–249.

    Google Scholar 

  • Haji, R., Haji, A., Sajadifar, M., & Zolfaghari, S. (2008b). Lot sizing with non-zero setup times for rework. Journal of Systems Science and Systems Engineering, 17, 230–240.

    Article  Google Scholar 

  • Haji, A., Sikari, S. S., & Shamsi, R. (2010). The effect of inspection errors on the optimal batch size in reworkable production systems with scraps. International Journal of Product Development, 10, 201–216.

    Article  Google Scholar 

  • Hayek, P. A., & Salameh, M. K. (2001). Production lot sizing with the reworking of imperfect quality items produced. Production Planning and Control, 12, 584–590.

    Article  Google Scholar 

  • Hou, K. L. (2007). An EPQ model with setup cost and process quality as functions of capital expenditure. Applied Mathematical Modelling, 31, 10–17.

    Article  Google Scholar 

  • Huang, Y. F. (2006). The effect of service constraint on EPQ model with random deffective rate. Mathematical Problems in Engineering. doi:10.1155/MPE/2006/79028.

  • Jaber, M. Y., Bonney, M., & Moualek, I. (2009). An economic order quantity model for an imperfect production process with entropy cost. International Journal of Production Economics, 118, 26–33.

    Article  Google Scholar 

  • Jaber, M. Y., Goyal, S. K., & Imran, M. (2008). Economic production quantity model for items with imperfect quality subject to learning effects. International Journal of Production Economics, 115, 143–150.

    Article  Google Scholar 

  • Jamal, A. M. M., Sarker, B. R., & Mondal, S. (2004). Optimal manufacturing batch size with rework process at a single-stage production system. Computers and Industrial Engineering, 47, 77–89.

    Article  Google Scholar 

  • Lee, H. L., Chandra, M. J., & Deleveaux, V. J. (1997). Optimal batch size and investment in multistage production systems with scrap. Production Planning and Control, 8, 586–596.

    Article  Google Scholar 

  • Lee, H. L., & Rosenblatt, M. (1987). Simultaneous determination of production cycle and inspection schedules in a production system. Management Sciences, 33, 1125–1136.

    Article  Google Scholar 

  • Liao, G. L., Chen, Y. H., & Sheu, S. H. (2009). Optimal economic production quantity policy for imperfect process with imperfect repair and maintenance. European Journal of Operational Research, 195, 348–357.

    Article  Google Scholar 

  • Liao, G. L., & Sheu, S. H. (2011). Economic production quantity model for randomly failing production process with minimal repair and imperfect maintenance. International Journal of Production Economics, 130, 118–124.

    Article  Google Scholar 

  • Noorollahi, E., Karimi-Nasab, M., & Aryanezhad, M. B. (2012). An economic production quantity model with random yield subject to process compressibility. Mathematical and Computer Modeling, 56, 80–96.

    Article  Google Scholar 

  • Parveen, M., & Rao, T. V. V. L. N. (2009). Optimal batch sizing, quality improvement and rework for an imperfect production system with inspection and restoration. European Journal of Industrial Engineering, 3, 305–335.

    Article  Google Scholar 

  • Pasandideh, S. H. R., Niaki, S. T. A., & Mirhosseini, S. S. (2010). A parameter-tuned genetic algorithm to solve multi-product economic production quantity model with defective items, rework, and constrained space. International Journal of advanced Manufacturing Technology, 49(5–8), 827–837.

    Article  Google Scholar 

  • Sana, S. S. (2010a). A production–inventory model in an imperfect production process. European Journal of Operational Research, 200, 451–464.

    Article  Google Scholar 

  • Sana, S. S. (2010b). An economic production lot size model in an imperfect production system. European Journal of Operational Research, 201, 158–170.

    Article  Google Scholar 

  • Sana, S. S., & Chaudhuri, K. S. (2010). An EMQ model in an imperfect production process. International Journal of Systems Science, 41, 635–646.

    Article  Google Scholar 

  • Sarkar, B., Sana, S. S., & Chaudhuri, K. S. (2010). Optimal reliability, production lot size and safety stock in an imperfect production system. International Journal of Mathematics in Operational Research, 2, 467–490.

    Article  Google Scholar 

  • Sarkar, B., Sana, S. S., & Chaudhuri, K. (2011). An imperfect production process for time varying demand with inflation and time value of money—An EMQ model. Expert Systems with Applications, 38, 13543–13548.

    Google Scholar 

  • Sarker, B. R., Jamal, A. A. M., & Mondal, S. (2008). Optimal batch sizing in a multi-stage production system with rework consideration. European Journal of Operational Research, 184, 915–929.

    Article  Google Scholar 

  • Shi, J., Katehakis, M. N., & Melamed, B. (2013). Martingale methods for pricing inventory penalties under continuous replenishment and compound renewal demands. Annals of Operations Research, 208(1), 593–612.

    Article  Google Scholar 

  • Shi, J., Katehakis, M. N., Melamed, B., & Xia, Y. (2014). Optimal continuous replenishment for inventory systems with compound Poisson demands and lost-sales. Operations Research, 6(5), 1048–1063.

    Article  Google Scholar 

  • Taheri-Tolgari, J., Mirzazadeh, A., & Jolai, F. (2012). An inventory model for imperfect items under inflationary conditions with considering inspection errors. Computers and Mathematics with Applications, 63, 1007–1019.

    Article  Google Scholar 

  • Taleizadeh, A. A. (2014). An economic order quantity model with partial backordering and advance payments for an evaporating item. International Journal of Production Economic, 155, 185–193.

    Article  Google Scholar 

  • Taleizadeh, A. A., Barzinpour, F., & Wee, H. M. (2011a). Meta-heuristic algorithms to solve the fuzzy single period problem. Mathematical and Computer Modeling, 54(5–6), 1273–1285.

    Article  Google Scholar 

  • Taleizadeh, A. A., Cardenas-Barron, L. E., & Mohamamdi, B. (2012a). Multi product single machine EPQ model with backordering, scraped products, rework and interruption in manufacturing process. International Journal of Production Economic, 150, 9–27.

    Article  Google Scholar 

  • Taleizadeh, A. A., Moghadasi, H., Niaki, S. T. A., & Eftekhari, A. K. (2009). An EOQ-joint replenishment policy to supply expensive imported raw materials with payment in advance. Journal of Applied Science, 8(23), 4263–4273.

    Google Scholar 

  • Taleizadeh, A. A., Najafi, A. A., & Niaki, S. T. A. (2010a). Economic production quantity model with scraped items and limited production capacity. Scientia Iranica, 17, 58–69.

    Google Scholar 

  • Taleizadeh, A. A., & Nematollahi, M. R. (2014). An inventory control problem for deteriorating items with backordering and financial engineering considerations. Applied Mathematical Modeling, 38, 93–109.

    Article  Google Scholar 

  • Taleizadeh, A. A., Niaki, S. T., & Aryanezhad, M. B. (2008). Multi-product multi-constraint inventory control systems with stochastic replenishment and discount under fuzzy purchasing price and holding costs. American Journal of Applied Science, 8(7), 1228–1234.

    Article  Google Scholar 

  • Taleizadeh, A. A., Niaki, S. T. A., & Aryanezhad, M. B. (2010b). Replenish-up-to multi chance-constraint inventory control system with stochastic period lengths and total discount under fuzzy purchasing price and holding costs. International Journal of System Sciences, 41(10), 1187–1200.

    Article  Google Scholar 

  • Taleizadeh, A. A., Niaki, S. T. A., Aryanezhad, M. B., & Fallah-Tafti, A. (2010c). A genetic algorithm to optimize multi-product multi-constraint inventory control systems with stochastic replenishments and discount. International Journal of Advanced Manufacturing Technology, 51(1–4), 311–323.

    Article  Google Scholar 

  • Taleizadeh, A. A., Niaki, S. T. A., & Najafi, A. A. (2010d). Multi-product single-machine production system with stochastic scrapped production rate, partial backordering and service level constraint. Journal of Computational and Applied Mathematics, 233, 1834–1849.

    Article  Google Scholar 

  • Taleizadeh, A. A., & Pentico, D. W. (2013). An economic order quantity model with known price increase and partial backordering. European Journal of Operational Research, 28(3), 516–525.

    Article  Google Scholar 

  • Taleizadeh, A. A., & Pentico, D. W. (2014). An economic order quantity model with partial backordering and all-units discount. International Journal of Production Economic, 155, 172–184.

    Article  Google Scholar 

  • Taleizadeh, A. A., Pentico, D. W., Aryanezhad, M. B., & Ghoreyshi, M. (2012b). An economic order quantity model with partial backordering and a special sale price. European Journal of Operational Research, 221(3), 571–583.

    Article  Google Scholar 

  • Taleizadeh, A. A., Pentico, D. W., Jabalameli, M. S., & Aryanezhad, M. B. (2013a). An economic order quantity model with multiple partial prepayments and partial backordering. Mathematical and Computer Modeling, 57(3–4), 311–323.

    Article  Google Scholar 

  • Taleizadeh, A. A., Sadjadi, S. J., & Niaki, S. T. A. (2010e). Multi-product EPQ model with single machine, backordering and Immediate rework process. European journal of Industrial Engineering, 5, 388–411.

    Article  Google Scholar 

  • Taleizadeh, A. A., Wee, H. M., & Jalali-Naini, S. G. R. (2013b). Economic production quantity model with repair failure and limited capacity. Applied Mathematical Modeling, 37(5), 2765–2774.

    Article  Google Scholar 

  • Taleizadeh, A. A., Wee, H. M., & Sadjadi, S. J. (2010f). Multi-product production quantity model with repair failure and partial backordering. Computers and Industrial Engineering, 59, 45–54.

    Article  Google Scholar 

  • Taleizadeh, A. A., Widyadana, G. A., Wee, H. M., & Biabani, J. (2011b). Multi products single machine economic production quantity model with multiple batch size. International Journal of Industrial Engineering Computations, 2, 213–224.

    Article  Google Scholar 

  • Ting, C. K., Chiu, Y. S. P., & Chan, C. C. H. (2011). Optimal lot sizing with scrap and random breakdown occurring in backorder replenishment period. Mathematical and Computational Applications, 16, 329–339.

    Article  Google Scholar 

  • Wee, H. M., & Chung, C. J. (2009). Optimizing replenishment policy for an integrated production inventory deteriorating model considering green component-value design and remanufacturing. International Journal of Production Research, 47(5), 1343–1368.

    Article  Google Scholar 

  • Wee, H. M., Yu, Jonas, & Chen, M. C. (2007). Optimal inventory model for items with imperfect quality and shortage backordering. Omega, 35, 7–11.

    Article  Google Scholar 

  • Yoo, S. H., Kim, D. S., & Park, M. S. (2009). Economic production quantity model with imperfect-quality items, two-way imperfect inspection and sales return. International Journal of Production Economics, 121, 255–265.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ata Allah Taleizadeh.

Appendices

Appendix (A): Holding cost of perfect items

From Eq. (40),

$$\begin{aligned} HCPQ_i= & {} h_i \left[ \frac{H_i }{2}\left( t_i^4 \right) +\frac{H_i +H_i^{Max} }{2}\left( t_i^5 \right) +\frac{H_i^{Max} }{2}\left( t_i^6 \right) \right] \\= & {} h_i \left[ \frac{H_i }{2}\left( t_i^4 +t_i^5 \right) +\frac{H_i^{Max} }{2}\left( t_i^5 +t_i^6 \right) \right] \end{aligned}$$

Knowing \(X_i =P_i -\varphi _i -d_i \)and assuming \(U_i =P_i^1 -\varphi _i^1 -d_i \) we have;

$$\begin{aligned} HCPQ_i= & {} h_i \left[ {\frac{H_i }{2}\left( {\frac{H_i }{N_i }+\frac{x_i q_i }{P_i^1 }} \right) +\frac{H_i^{Max} }{2}\left( {\frac{x_i q_i }{P_i^1 }+\frac{H_i^{Max} }{d_i }} \right) } \right] \\= & {} \frac{h_i }{2}\left[ {\left( {\frac{H_i ^{2}}{X_i }+\frac{x_i H_i d_i }{P_i^1 }} \right) +\left( {\frac{x_i H_i^{Max} q_i }{P_i^1 }+\frac{\left( {H_i^{Max} } \right) ^{2}}{d_i }} \right) } \right] \\= & {} \frac{h_i }{2}\left[ {\begin{array}{l} \frac{\left( {X_i \frac{q_i }{P_i }-\beta _i b_i -d_i t_m } \right) ^{2}}{X_i }+\frac{x_i q_i }{P_i^1 }\left( {X_i \frac{q_i }{P_i }-\beta _i b_i -d_i t_m +U_i \frac{x_i q_i }{P_i^1 }} \right) \\ +\frac{x_i \left( {X_i \frac{q_i }{P_i }-\beta _i b_i -d_i t_m } \right) q_i }{P_i^1 }+\frac{\left( {X_i \frac{q_i }{P_i }-\beta _i b_i -d_i t_m +U_i \frac{x_i q_i }{P_i^1 }} \right) ^{2}}{d_i } \\ \end{array}} \right] \end{aligned}$$

finally,

$$\begin{aligned}= & {} \frac{h_i }{2}\left[ {\begin{array}{l} \frac{\left( {X_i \frac{q_i }{P_i }-\beta _i b_i -d_i t_m } \right) ^{2}}{X_i }+\frac{x_i \left( {X_i \frac{q_i }{P_i }-\beta _i b_i -d_i t_m } \right) q_i }{P_i^1 } \\ +\frac{x_i q_i }{P_i^1 }\left( {X_i \frac{q_i }{P_i }-\beta _i b_i -d_i t_m +U_i \frac{x_i q_i }{P_i^1 }} \right) +\frac{\left( {X_i \frac{q_i }{P_i }-\beta _i b_i -d_i t_m +U_i \frac{x_i q_i }{P_i^1 }} \right) ^{2}}{d_i } \\ \end{array}} \right] \\= & {} \frac{h_i }{2}\left[ {\begin{array}{l} \frac{\left( {\left( {X_i \frac{q_i }{P_i }-\beta _i b_i } \right) -d_i t_m } \right) ^{2}}{X_i }+\frac{x_i \left( {X_i \frac{q_i }{P_i }-\beta _i b_i -d_i t_m } \right) q_i }{P_i^1 } \\ +\frac{x_i q_i }{P_i^1 }\left( {\left( {\frac{X_i }{P_i }+\frac{x_i U_i }{P_i^1 }} \right) q_i -\beta _i b_i -d_i t_m } \right) +\frac{\left( {\left( {\frac{X_i }{P_i }+\frac{x_i U_i }{P_i^1 }} \right) q_i -\beta _i b_i -d_i t_m } \right) ^{2}}{d_i } \\ \end{array}} \right] \\= & {} \frac{h_i }{2}\left[ {\begin{array}{l} \frac{\left( {\left( {X_i \frac{q_i }{P_i }-\beta _i b_i } \right) -d_i t_m } \right) ^{2}}{X_i }+\frac{x_i q_i }{P_i^1 }\left( {\left( {\frac{2X_i }{P_i }+\frac{x_i U_i }{P_i^1 }} \right) q_i -2\beta _i b_i -2d_i t_m } \right) \\ +\frac{\left( {\left( {\frac{X_i }{P_i }+\frac{x_i U_i }{P_i^1 }} \right) q_i -\beta _i b_i -d_i t_m } \right) ^{2}}{d_i } \\ \end{array}} \right] \\= & {} \frac{h_i }{2}\left[ {\begin{array}{l} \frac{\left( {\left( {X_i \frac{q_i }{P_i }-\beta _i b_i } \right) ^{2}-2d_i t_m \left( {X_i \frac{q_i }{P_i }-\beta _i b_i } \right) +d_i ^{2}t_m ^{2}} \right) }{X_i }+\frac{x_i q_i }{P_i^1 }\left( {\left( {\frac{2X_i }{P_i }+\frac{x_i U_i }{P_i^1 }} \right) q_i -2\beta _i b_i -2d_i t_m } \right) \\ +\frac{\left( {\left( {\frac{X_i }{P_i }+\frac{x_i U_i }{P_i^1 }} \right) ^{2}q_i ^{2}+\left( {\beta _i b_i +d_i t_m } \right) ^{2}-2\left( {\frac{X_i }{P_i }+\frac{x_i U_i }{P_i^1 }} \right) q_i \left( {\beta _i b_i +d_i t_m } \right) } \right) }{d_i }\\ \end{array}} \right] \\= & {} \frac{h_i }{2}\left[ {\begin{array}{l} \frac{\left( {\left( {\frac{X_i }{P_i }} \right) ^{2}q_i ^{2}+\beta _i ^{2}b_i ^{2}-2\left( {\frac{X_i }{P_i }} \right) q_i \beta _i b_i -2d_i t_m \left( {X_i \frac{q_i }{P_i }-\beta _i b_i } \right) +d_i ^{2}t_m ^{2}} \right) }{X_i }-2\left( {\frac{X_i }{P_i }+\frac{x_i U_i }{P_i^1 }} \right) \left( {q_i \beta _i b_i +t_m q_i } \right) \\ -\frac{2x_i q_i }{P_i^1 }\left( {\beta _i b_i +d_i t_m } \right) +\frac{\left( {\frac{X_i }{P_i }+\frac{x_i U_i }{P_i^1 }} \right) ^{2}q_i ^{2}+\beta _i ^{2}b_i ^{2}+\left( {d_i t_m } \right) ^{2}+2d_i t_m \beta _i b_i }{d_i }+\left( {\frac{2x_i X_i }{P_i P_i^1 }+\frac{x_i ^{2}U_i }{\left( {P_i^1 } \right) ^{2}}} \right) q_i ^{2} \\ \end{array}} \right] \\= & {} \frac{h_i }{2}\left[ {\begin{array}{l} \left( {\frac{X_i }{P_i ^{2}}} \right) q_i ^{2}+\frac{1}{X_i }\beta _i ^{2}b_i ^{2}-2\left( {\frac{1}{P_i }} \right) q_i \beta _i b_i -2d_i t_m \left( {\frac{1}{P_i }q_i -\frac{1}{X_i }\beta _i b_i } \right) +\frac{d_i ^{2}t_m ^{2}}{X_i } \\ \left( {\frac{2x_i X_i }{P_i P_i^1 }+\frac{x_i ^{2}U_i }{\left( {P_i^1 } \right) ^{2}}} \right) q_i ^{2}-\frac{2x_i }{P_i^1 }q_i \beta _i b_i -\frac{2x_i d_i t_m }{P_i^1 }q_i +\frac{\left( {\frac{X_i }{P_i }+\frac{x_i U_i }{P_i^1 }} \right) ^{2}q_i ^{2}}{d_i } \\ +\frac{\beta _i ^{2}b_i ^{2}}{d_i }+d_i \left( {t_m } \right) ^{2}+2t_m \beta _i b_i -2\left( {\frac{X_i }{P_i }+\frac{x_i U_i }{P_i^1 }} \right) q_i \beta _i b_i -2\left( {\frac{X_i }{P_i }+\frac{x_i U_i }{P_i^1 }} \right) t_m q_i \\ \end{array}} \right] \\= & {} \frac{h_i }{2}\left( {\frac{X_i }{P_i ^{2}}+\frac{2x_i X_i }{P_i P_i^1 }+\frac{x_i ^{2}U_i }{\left( {P_i^1 } \right) ^{2}}+\frac{\left( {\frac{X_i }{P_i }+\frac{x_i U_i }{P_i^1 }} \right) ^{2}}{d_i }} \right) Q_i ^{2}+\frac{h_i \beta _i ^{2}}{2}\left( {\frac{1}{X_i }+\frac{1}{d_i }} \right) B_i ^{2}\\&\quad +\,\frac{C_i^h \left( {d_i ^{2}+D_i X_i } \right) t_m ^{2}}{2X_i }-h_i \beta _i \left( {\frac{1}{P_i }+\frac{x_i }{P_i^1 }+\left( {\frac{X_i }{P_i }+\frac{x_i U_i }{P_i^1 }} \right) } \right) q_i b_i \\&\quad -\,h_i t_m \left( {\frac{d_i +X_i }{P_i }+\frac{x_i \left( {d_i +U_i } \right) }{P_i^1 }} \right) q_i +h_i \beta _i t_m \left( {\frac{X_i +d_i }{X_i }} \right) b_i \end{aligned}$$

Appendix (B): Cyclic objective function

We know,

$$\begin{aligned} TC\left( q,b\right)= & {} K_i +\left( {C_i^P +R_i x_i +V_i x_i \theta _i } \right) q_i\\&\quad +\,\pi _i \left[ {\frac{b_i }{2}\left( t_i^1 +t_i^7 \right) +\frac{H_i^1 }{2}\left( t_i^2 +t_i^3 \right) } \right] +\hat{{\pi }}_i \left[ \left( 1-\beta _i \right) d_i t_i^2 +\left( 1-\beta _i \right) b_i \right] \\&\quad +\,h_i \left[ \frac{H_i }{2}\left( t_i^4 \right) +\frac{H_i +H_i^{Max} }{2}\left( t_i^5 \right) +\frac{H_i^{Max} }{2}\left( t_i^6 \right) \right] \\&\quad +\,{h}'_i \left[ \frac{P_i x_i \theta \left( t_i^1 +t_i^3 +t_i^4 \right) }{2}\left( t_i^5 \right) \right] \\&\quad +\,h_i \left[ \frac{P_i x_i t_i^1 }{2}\left( t_i^1 \right) +P_i x_i t_i^1 \left( t_i^2 \right) +P_i x_i t_i^1 \left( t_i^3 +t_i^4 \right) +\frac{P_i x_i \left( t_i^3 +t_i^4 \right) }{2}\left( t_i^3 +t_i^4 \right) \right. \\&\left. \quad +\,\frac{P_i x_i \left( t_i^1 +t_i^3 +t_i^4 \right) }{2}t_i^5 \right] \end{aligned}$$

after some simplifications the cyclic total cost function is:

$$\begin{aligned}&TC(q,b)=\left( {\frac{h_i }{2}\left( {\frac{X_i }{P_i ^{2}}+\frac{2x_i X_i }{P_i P_i^1 }+\frac{x_i }{P_i }+\frac{x_i ^{2}}{P_i^1 }+\frac{x_i ^{2}U_i }{\left( {P_i^1 } \right) ^{2}}+\frac{\left( {\frac{X_i }{P_i }+\frac{x_i U_i }{P_i^1 }} \right) ^{2}}{d_i }} \right) +\frac{{h}'_i \theta _i \left( {x_i } \right) ^{2}}{2P_i^1 }} \right) q_i ^{2}\\&\quad +\left( {\frac{\pi _i \beta _i Y_i }{2d_i X_i }+\frac{h_i \beta _i ^{2}}{2}\left( {\frac{1}{X_i }+\frac{1}{d_i }} \right) } \right) b_i^2 -h_i \beta _i \left( {\frac{1}{P_i }+\frac{x_i }{P_i^1 }+\left( {\frac{X_i }{P_i }+\frac{x_i U_i }{P_i^1 }} \right) } \right) q_i b_i\\&\quad +\left( {C_i^P +R_i x_i +V_i x_i \theta _i -h_i t_m \left( {\frac{d_i +X_i }{P_i }+\frac{x_i \left( {d_i +U_i } \right) }{P_i^1 }} \right) } \right) q_i\\&\quad +\left( {h_i \beta _i t_m \left( {\frac{X_i +d_i +P_i x_i }{X_i }} \right) +\hat{{\pi }}_i (1-\beta _i )} \right) b_i\\&\quad +\,K_i +\frac{C_i^h \left( {d_i ^{2}+d_i X_i } \right) t_m ^{2}}{2X_i }+\frac{\pi _i d_i (P_i -\varphi _i )\left( {t_m } \right) ^{2}}{2X_i }+\hat{{\pi }}_i (1-\beta _i )d_i t_m \end{aligned}$$

Appendix (C): Convexity of objective function

$$\begin{aligned}&F=TC(T,b_i )=\sum \limits _{i=1}^n {\lambda _i^1 \frac{b_i ^{2}}{T}} +\sum \limits _{i=1}^n {\lambda _i^2 } \frac{b_i }{T}+\sum \limits _{i=1}^n {\lambda _i^3 } T -\sum \limits _{i=1}^n {\lambda _i^4 } b_i +\sum \limits _{i=1}^n {\lambda _i^5 } \frac{1}{T}+\sum \limits _{i=1}^n {\lambda _i^6 }\\&\frac{\partial F}{\partial T}=\frac{-\sum \limits _{i=1}^n {\lambda _i^1 b_i^2 -\sum \limits _{i=1}^n {\lambda _i^2 b_i } -\sum \limits _{i=1}^n {\lambda _i^5 } } }{T^{2}}+\sum \limits _{i=1}^n {\lambda _i^3 } \\&\frac{\partial ^{2}F}{\partial ^{2}T}=\frac{2\sum \limits _{i=1}^n {\lambda _i^1 b_i^2 +2\sum \limits _{i=1}^n {\lambda _i^2 b_i } +2\sum \limits _{i=1}^n {\lambda _i^5 } } }{T^{3}}\\&\frac{\partial ^{2}F}{\partial T\partial b_i }=\frac{-2\lambda _i^1 b_i -\lambda _i^2 }{T^{2}} \end{aligned}$$
(C1)
$$\begin{aligned}&\frac{\partial F}{\partial b_i }=\frac{2\lambda _i^1 b_i +\lambda _i^2 }{T}-\lambda _i^4 \\&\frac{\partial ^{2}F}{\partial ^{2}b_i }=\frac{2\lambda _i^1 }{T}\\&\frac{\partial ^{2}F}{\partial b_i \partial T}=\frac{-2\lambda _i^1 b_i -\lambda _i^2 }{T^{2}}\\&[T, b_1 ,b_2 ,\ldots ,b_n ]\times \left[ {{\begin{array}{lllll} {\frac{\partial ^{2}F}{\partial ^{2}T}}&{} {\frac{\partial ^{2}F}{\partial T\partial b_1 }}&{} {\frac{\partial ^{2}F}{\partial T\partial b_2 }}&{} \cdots &{} {\frac{\partial ^{2}F}{\partial T\partial b_n }} \\ &{}&{}&{}&{} \\ {\frac{\partial ^{2}F}{\partial b_1 \partial T}}&{} {\frac{\partial ^{2}F}{\partial ^{2}b_1 }}&{} {\frac{\partial ^{2}F}{\partial b_1 \partial b_2 }}&{} \cdots &{} {\frac{\partial ^{2}F}{\partial b_1 \partial b_n }} \\ &{}&{}&{}&{} \\ {\frac{\partial ^{2}F}{\partial b_2 \partial T}}&{} {\frac{\partial ^{2}F}{\partial b_2 \partial b_1 }}&{} {\frac{\partial ^{2}F}{\partial ^{2}b_2 }}&{} \cdots &{} {\frac{\partial ^{2}F}{\partial b_2 \partial b_n }} \\ &{}&{}&{}&{} \\ \quad \vdots &{} \quad \vdots &{} \quad \vdots &{} \vdots &{}\quad \vdots \\ &{}&{}&{}&{} \\ {\frac{\partial ^{2}F}{\partial b_n \partial T}}&{} {\frac{\partial ^{2}F}{\partial b_n \partial b_1 }}&{} {\frac{\partial ^{2}F}{\partial b_n \partial b_2 }}&{} \cdots &{} {\frac{\partial ^{2}F}{\partial ^{2}b_n }} \\ \end{array} }} \right] \left[ {{\begin{array}{l} T \\ {b_1 } \\ {b_2 } \\ \vdots \\ {b_n } \\ \end{array} }} \right] \\&=[T, b_1 ,b_2 ,\ldots ,b_n ]\times \left[ {{\begin{array}{lllll} {\frac{2\sum \limits _{i=1}^n {(\lambda _i^1 b_i^2 +\lambda _i^2 b_i +\lambda _i^5 )} }{T^{3}}}&{} {\frac{-2\lambda _1^1 b_1 -\lambda _1^2 }{T^{2}}}&{} {\frac{-2\lambda _2^1 b_2 -\lambda _2^2 }{T^{2}}}&{} \cdots &{} {\frac{-2\lambda _n^1 b_n -\lambda _n^2 }{T^{2}}} \\ &{}&{}&{}&{}\\ {\frac{-2\lambda _1^1 b_1 -\lambda _1^2 }{T^{2}}}&{} {\frac{2\lambda _1^1 }{T}}&{} 0&{} \cdots &{} 0 \\ &{}&{}&{}&{}\\ {\frac{-2\lambda _2^1 b_2 -\lambda _2^2 }{T^{2}}}&{} 0&{} {\frac{2\lambda _2^1 }{T}}&{} \cdots &{} 0 \\ &{}&{}&{}&{}\\ \vdots &{} \vdots &{} \vdots &{} \vdots &{} \vdots \\ &{}&{}&{}&{}\\ {\frac{-2\lambda _n^1 b_n -\lambda _n^2 }{T^{2}}}&{} 0&{} 0&{} \cdots &{} {\frac{2\lambda _n^1 }{T}} \\ \end{array} }} \right] \left[ {{\begin{array}{l} T \\ {b_1 } \\ {b_2 } \\ \vdots \\ {b_n } \\ \end{array} }} \right] \\&=\left[ {{\begin{array}{lllll} {\frac{\sum \limits _{i=1}^n {\psi _i^2 b_i } +\sum \limits _{i=1}^n {\lambda _i^5 } }{T^{2}}}&{} {-\frac{\lambda _1^2 }{T}}&{} {-\frac{\lambda _2^2 }{T}}&{} \cdots &{} {-\frac{\lambda _n^2 }{T}} \\ &{}&{}&{}&{}\\ \end{array} }} \right] \left[ {{\begin{array}{l} T \\ {b_1 } \\ {b_2 } \\ \vdots \\ {b_n } \\ \end{array} }} \right] =\frac{\sum \limits _{i=1}^n {\lambda _i^5 } }{T}\ge 0 \end{aligned}$$
(C2)

Appendix (D): Deriving the optimal solution

Setting the first derivative of objective function respect to T equal to zero gives;

$$\begin{aligned} \frac{\partial F}{\partial T}&=\frac{-\sum \limits _{i=1}^n {\lambda _i^1 b_i^2 -\sum \limits _{i=1}^n {\lambda _i^2 b_i } -\sum \limits _{i=1}^n {\lambda _i^5 } } }{T^{2}}+\sum \limits _{i=1}^n {\lambda _i^3 } =0\\ T^{2}&=\frac{\sum \limits _{i=1}^n {\lambda _i^1 b_i^2 +\sum \limits _{i=1}^n {\lambda _i^2 b_i } +\sum \limits _{i=1}^n {\lambda _i^5 } } }{\sum \limits _{i=1}^n {\lambda _i^3 } } \end{aligned}$$
(D1)

And setting the first derivative of objective function respect to \(b_i\) equal to zero gives;

$$\begin{aligned} \frac{\partial F}{\partial b_i }&=\frac{2\lambda _i^1 b_i +\lambda _i^2 }{T}-\lambda _i^4 =0\\ b_i&=\frac{\lambda _i^4 T-\lambda _i^2 }{2\lambda _i^1 } \end{aligned}$$
(D2)

Substituting (D2) in (D1) yields;

$$\begin{aligned}&T^{2}=\frac{\sum \nolimits _{i=1}^n {\lambda _i^1 \left( {\frac{\lambda _i^4 T-\lambda _i^2 }{2\lambda _i^1 }} \right) ^{2}+\sum \nolimits _{i=1}^n {\lambda _i^2 \left( {\frac{\lambda _i^4 T-\lambda _i^2 }{2\lambda _i^1 }} \right) } +\sum \nolimits _{i=1}^n {\lambda _i^5 } } }{\sum \nolimits _{i=1}^n {\lambda _i^3 } }\\&\quad T^{2}=\frac{\sum \nolimits _{i=1}^n {\left( {\frac{\left( {\lambda _i^4 T} \right) ^{2}-2\lambda _i^2 \lambda _i^4 T+\left( {\lambda _i^2 } \right) ^{2}}{4\lambda _i^1 }} \right) +\sum \nolimits _{i=1}^n {\left( {\frac{\lambda _i^2 \lambda _i^4 T-\left( {\lambda _i^2 } \right) ^{2}}{2\lambda _i^1 }} \right) } +\sum \nolimits _{i=1}^n {\lambda _i^5 } } }{\sum \nolimits _{i=1}^n {\lambda _i^3 } }\\&\quad \sum \limits _{i=1}^n {\lambda _i^3 } T^{2}=\sum \limits _{i=1}^n {\left( {\frac{\left( {\lambda _i^4 T} \right) ^{2}-2\lambda _i^2 \lambda _i^4 T+\left( {\lambda _i^2 } \right) ^{2}}{4\lambda _i^1 }} \right) +\sum \limits _{i=1}^n {\left( {\frac{\lambda _i^2 \lambda _i^4 T-\left( {\lambda _i^2 } \right) ^{2}}{2\lambda _i^1 }} \right) } +\sum \limits _{i=1}^n {\lambda _i^5 } }\\&\quad \sum \limits _{i=1}^n {\lambda _i^3 } T^{2}=\sum \limits _{i=1}^n {\left( {\frac{\left( {\lambda _i^4 T} \right) ^{2}+\left( {\lambda _i^2 } \right) ^{2}}{4\lambda _i^1 }} \right) +\sum \limits _{i=1}^n {\left( {\frac{-\left( {\lambda _i^2 } \right) ^{2}}{2\lambda _i^1 }} \right) } +\sum \limits _{i=1}^n {\lambda _i^5 } }\\&\quad \left( {\sum \limits _{i=1}^n {\lambda _i^3 } -\sum \limits _{i=1}^n {\left( {\frac{\left( {\lambda _i^4 } \right) ^{2}}{4\lambda _i^1 }} \right) } } \right) T^{2}=\sum \limits _{i=1}^n {\left( {\frac{4\lambda _i^1 \lambda _i^5 -\left( {\lambda _i^2 } \right) ^{2}}{4\lambda _i^1 }} \right) }\\&\quad T=\sqrt{\frac{\sum \nolimits _{i=1}^n {\left( {\frac{4\lambda _i^1 \lambda _i^5 -\left( {\lambda _i^2 } \right) ^{2}}{4\lambda _i^1 }} \right) } }{\sum \nolimits _{i=1}^n {\left( {\lambda _i^3 -\frac{\left( {\lambda _i^4 } \right) ^{2}}{4\lambda _i^1 }} \right) } }} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taleizadeh, A.A. A constrained integrated imperfect manufacturing-inventory system with preventive maintenance and partial backordering. Ann Oper Res 261, 303–337 (2018). https://doi.org/10.1007/s10479-017-2563-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-017-2563-7

Keywords

Navigation