Skip to main content

Advertisement

Log in

A multi-objective, hub-and-spoke model to design and manage biofuel supply chains

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In this paper we propose a multi-objective, mixed integer linear programming model to design and manage the supply chain for biofuels. This model captures the trade-offs that exist between costs, environmental and social impacts of delivering biofuels. The in-bound supply chain for biofuel plants relies on a hub-and-spoke structure which optimizes transportation costs of biomass. The model proposed optimizes the \(\hbox {CO}_{2}\) emissions due to transportation-related activities in the supply chain. The model also optimizes the social impact of biofuels. The social impacts are evaluated by the number of jobs created. The multi-objective optimization model is solved using an augmented \(\epsilon \)-constraint method. The method provides a set of Pareto optimal solutions. We develop a case study using data from the Midwest region of the USA. The numerical analyses estimates the quantity and cost of cellulosic ethanol delivered under different scenarios generated. The insights we provide will help policy makers design policies which encourage and support renewable energy production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abounacer, R., Rekik, M., & Renaud, J. (2014). An exact solution approach for multi-objective location-transportation problem for disaster response. Computers & Operations Research, 41(1), 83–93.

    Article  Google Scholar 

  • Ahuja, R. K., Magnanti, T. L., & Orlin, J. B. (1993). Network flows: Theory, algorithms, and applications. Upper Saddle River, NJ: Prentice Hall Publishers.

    Google Scholar 

  • Alumur, S., & Kara, B. Y. (2008). Network hub location problems: The state of the art. European Journal of Operational Research, 190, 1–21.

    Article  Google Scholar 

  • Argo, M. R., Tan, E. C. D., Inman, D., Langholtz, M. H., Eaton, L. M., Jacobson, J. J., et al. (2013). Investigation of biochemical biorefinery sizing and environmental sustainability impacts for conventional bale system and advanced uniform biomass logistics designs. Journal of Biofuels, Bioproducts, and Biorefining, 7(3), 282–302.

    Article  Google Scholar 

  • Bai, Y., Hwang, T., Kang, S., & Ouyang, Y. (2011). Biofuel refinery location and supply chain planning under traffic congestion. Transportation Research Part B: Methodological, 45(1), 162–175.

    Article  Google Scholar 

  • Brower, M., (2010). Woody biomass economics. http://www.mosaicllc.com/documents/34.pdf.

  • Camargo, R. S., Miranda, G, Jr, Ferreira, R., & Luna, H. P. (2009a). Multiple allocation hub and spoke network design under hub congestion. Computers and Operations Research, 36(12), 3097–3106.

    Article  Google Scholar 

  • Campbell, J. F., & O’Kelly, M. E. (2012). Twenty-five years of hub location research. Transportation Science, 46(2), 153–169.

    Article  Google Scholar 

  • Congress of the United States, Congressional Budget Office (CBO). (2006). Freight Rail Transportation: Long-term Issues.

  • Chang, N. B., Wen, C. G., & Chen, Y. L. (1997). A fuzzy multi-objective programming approach for optimal management of the reservoir watershed. European Journal of Operational Research, 99(2), 289–302.

  • Chen, J. (2007). A hybrid heuristic for the uncapacitated single allocation hub location problem. Omega, 35(2), 211–220.

    Article  Google Scholar 

  • Chen, C., & Fan, Y. (2012). Bioethanol supply chain system planning under supply and demand uncertainties. Transportation Research Part E: Logistics and Transportation Review, 48(1), 150–164.

    Article  Google Scholar 

  • Cundiff, J. S., Dias, N., & Sherali, H. D. (1997). A linear programming approach for designing a herbaceous biomass delivery system. Bioresource Technology, 59(1), 47–55.

    Article  Google Scholar 

  • Cunha, C. B., & Silva, M. R. (2007). A genetic algorithm for the problem of configuring a hub-and-spoke network for a LTL trucking company in Brazil. European Journal of Operational Research, 179(3), 747–758.

    Article  Google Scholar 

  • Ehrgott, M., & Wiecek, M. (2005). Multiobjective programming. In J. Figueira, S. Greco, & M. Ehrgott (Eds.), Multiple Criteria Decision Analysis. State of the Art Surveys. Berlin: Springer.

    Google Scholar 

  • El-Halwagi, A. M., Rosas, C., Ponce-Ortega, J. M., Jiménez-Gutiérrez, A., Mannan, M. S., & El-Halwagi, M. M. (2013). Multi-objective optimization of biorefineries with economic and safety objectives. AIChE Journal, 59, 2427–2434.

    Article  Google Scholar 

  • Eksioglu, S. D., Acharya, A., Leightley, L. E., & Arora, S. (2009). Analyzing the design and management of biomass-to-biorefinery supply chain. Computers and Industrial Engineering, 57(4), 1342–1352.

    Article  Google Scholar 

  • Eksioglu, S. D., Zhang, S., Li, S., Sokhansanj, S., & Petrolia, D. (2011). Analyzing the impact of intermodal facilities to the design of the supply chains for biorefineries. Transportation Research Record, Journal of the Transportation Research Board, 2191(1), 144–151.

    Google Scholar 

  • Gebreslassie, B. H., Yao, Y., & You, F. (2012). Design under uncertainty of hydrocarbon biorefinery supply chains: Multiobjective stochastic programming models, decomposition algorithm, and a comparison between CVaR and downside risk. AIChE Journal, 58(7), 1547–5905.

    Article  Google Scholar 

  • Greenhouse Gas Protocol (2012). Emission factors from cross-sector tools. http://www.ghgprotocol.Org/calculation-tools/all-tools.

  • Gonzales, D., Searcy, E. M., & Ekşioğlu, S. D. (2013). Cost analysis for high-volume and long-haul transportation of densified biomass feedstock. Transportation Research Part A: Policy and Practice, 49, 48–61.

    Article  Google Scholar 

  • Hess, J.R., Wright, T.C., Kenney L.K., & Searcy M.E. (2009). Uniform-Format solid feedstock supply system: A commodity-scale design to produce an infrastructure-compatible bulk solid from lignocellulosic biomass. INL/EXT-09-15423. http://www.inl.gov/technicalpublications/Documents/4408280.pdf.

  • Huang, Y., Chen, C. W., & Fan, Y. (2010). Multistage optimization of the supply chains of biofuels. Transportation Research Part E: Logistics and Transportation Review, 46(6), 820–830.

    Article  Google Scholar 

  • Idaho National Laboratory (2014). Feedstock and conversion supply system design and analysis, the feedstock logistics design case. https://bioenergy.inl.gov/Reports/FeedstockSupplySystemDesignandAnalysis.pdf

  • Isermann, H., & Steuer, R. E. (1987). Computational experience concerning payoff tables and minimum criterion values over the efficient set. European Journal of Operational Research, 33, 91–97.

    Article  Google Scholar 

  • Jacobson, J.J., Roni, M.S., Cafferty, K., Kenney, K., Searcy, E., & Hansen, J.K. (2014). Biomass feedstock supply system design and analysis. Report INL/EXT-14-33227.

  • Jozefowiez, N., Laporte, G., & Semet, F. (2012). A generic branch-and-cut algorithm for multi-objective optimization problems: Application to the multi-label traveling salesman problem. INFORMS Journal on Computing, 24, 554–564.

    Article  Google Scholar 

  • Kim, J., Realff, M. J., Lee, J. H., Whittaker, C., & Furtner, L. (2011a). Design of biomass processing network for biofuel production using an MILP model. Biomass and Bioenergy, 35(2), 853–871.

    Article  Google Scholar 

  • Kim, J., Realff, M. J., & Lee, J. H. (2011b). Optimal design and global sensitivity analysis of biomass supply chain networks for biofuels under uncertainty. Computers & Chemical Engineering, 35(9), 1738–1751.

    Article  Google Scholar 

  • Kirlik, G., & Sayın, S. (2014). A new algorithm for generating all nondominated solutions of multiobjective discrete optimization problems. European Journal of Operational Research, 232(3), 479–488.

    Article  Google Scholar 

  • Köksalan, M., & Lokman, B. (2009). Approximating the nondominated frontiers of multi-objective combinatorial optimization problems. Naval Research Logistics, 56(2), 191–198.

  • Kumar, A., & Sokhansanj, S. (2007). Switchgrass (Panicum vigratum, L.) delivery to a biorefinery using integrated biomass supply analysis and logistics (IBSAL) model. Bioresource Technology, 98(5), 1033–1044.

    Article  Google Scholar 

  • Labbe, M., & Yaman, H. (2004). Projecting flow variables for hub location problems. Networks, 44(2), 84–93.

    Article  Google Scholar 

  • Laumanns, M., Thiele, L., & Zitzler, E. (2006). An efficient, adaptive parameter variation scheme for metaheuristics based on the epsilon-constraint method. European Journal of Operational Research, 169(3), 932–942.

  • Li, J., Burke, E. K., Curtois, T., Petrovic, S., & Qu, R. (2012). The falling tide algorithm: A new multi-objective approach for complex workforce scheduling. Omega, 40(3), 283–293.

    Article  Google Scholar 

  • Mahmudi, H., & Flynn, P. (2006). Rail versus truck transport of biomass. Applied Biochemistry and Biotechnology, 129(1), 88–103.

    Article  Google Scholar 

  • Marufuzzaman, M., Eksioglu, S. D., & Hernandez, R. (2014). Environmentally friendly supply chain planning and design for biodiesel production via wastewater sludge. Transportation Science, 48(4), 555–574.

    Article  Google Scholar 

  • Mavrotas, G. (2009). Effective implementation of the \(\upvarepsilon \)-constraint method in multi-objective mathematical programming problems. Applied Mathematics and Computation, 213(2), 455–465.

    Article  Google Scholar 

  • Mavrotas, G., & Florios, K. (2013). An improved version of the augmented \(\upvarepsilon \)-constraint method (AUGMECON2) for finding the exact pareto set in multi-objective integer programming problems. Applied Mathematics and Computation, 219(18), 9652–9669.

    Article  Google Scholar 

  • Mele, F. D., Guille’n-Gosa’lbez, G., & Jime’nez, L. (2009). Optimal planning of supply chains for bioethanol and sugar production with economic and environmental concerns. Computer Aided Chemical Engineering, 26, 997–1002.

    Article  Google Scholar 

  • Miettinen, K. M. (1998). Nonlinear multiobjective optimization. Boston: Kluwer Academic Publishers.

    Book  Google Scholar 

  • National Renewable Energy Laboratory (2013). Job and economic development impact model. https://bioenergy.inl.gov/Reports/FeedstockSupplySystemDesignandAnalysis.pdf.

  • Oak Ridge National Laboratory, Center for Transportation Analysis (2009). Oak Ridge National Laboratory Rail Network Analysis. http://www-cta.ornl.gov/transnet/RailRoads.html.

  • Özdamar, L., & Yi, W. (2008). Greedy neighborhood search for disaster relief and evacuation logistics. IEEE Intelligent Systems, 23(1), 14–23.

  • Papapostolou, C., Kondili, E., & Kaldellis, J. K. (2011). Development and implementation of an optimization model for biofuels supply chain. Energy, 36(10), 6019–6026.

    Article  Google Scholar 

  • Perimenis, A., Walimwipi, H., Zinoviev, S., Müller-Langer, F., & Miertus, S. (2011). Development of a decision support tool for the assessment of biofuels. Energy Policy, 39(3), 1782–1793.

    Article  Google Scholar 

  • Parker, N., Tittmann, P., Hart, Q., Nelson, R., Skog, K., Schmidt, Edward A. G., et al. (2010). Development of a biorefinery optimized biofuel supply curve for the Western United States. Biomass and Bioenergy, 34(11), 1597–1607.

    Article  Google Scholar 

  • Reeves, G. R., & Reid, R. C. (1988). Minimum values over the efficient set in multiple objective decision making. European Journal of Operational Research, 36, 334–338.

    Article  Google Scholar 

  • Roni, M., Eksioglu, S., Searcy, E., & Jha, K. (2014a). A supply chain network design model for biomass cofiring in coal-fired power plants. Transportation Research Part E: Logistics and Transportation Review, 61, 115–134.

    Article  Google Scholar 

  • Roni, M. (2013). Analyzing the impact of a hub and spoke supply chain design for long-haul, high-volume transportation of densified biomass. Mississippi State University. Ph.D. Dissertation.

  • Roni, M. S., Eksioglu, S. D., Searcy, E., & Jacobson, J. J. (2014b). Estimating the variable cost for high-volume and long-haul transportation of densified biomass and biofuel. Transportation Research Part D: Transport and Environment, 29, 40–55.

    Article  Google Scholar 

  • Ren, L., Cafferty, K., Roni, Jacobson, J., Xie, G., Ovard, L., Wright, C. (2015). Analyzing and comparing biomass feedstock supply systems in China: Corn Stover and Sweet Sorghum Case Studies. Energies (Accepted).

  • Searcy, E., & Flynn, P. (2008). The impact of biomass availability and processing cost on optimum size and processing technology selection. Applied Biochemistry and Biotechnology, 154, 271–286.

    Google Scholar 

  • Searcy, E., Flynn, P., Ghafoori, E., & Kumar A. (2007). The relative cost of biomass energy transport. Applied Biochemistry and Biotechnology, 137–140(1-12), 639–652.

  • Sheu, J. B. (2010). Dynamic relief-demand management for emergency logistics operations under large-scale disasters. Transportation Research Part E: Logistics and Transportation Review, 46(1), 1–17.

    Article  Google Scholar 

  • Silva, M. R., & Cunga, C. B. (2009). New simple and efficient heuristics for the uncapacitated single allocation hub location problem. Computers and Operations Research, 36(12), 3152–3165.

    Article  Google Scholar 

  • Skorin-Kapov, D., Skorin-Kapov, J., & O’Kelly, M. E. (1996). Tight linear programming relaxations of uncapacitated p-hub median problems. European Journal of Operational Research, 94(3), 582–593.

    Article  Google Scholar 

  • Sokhansonj, S., Kumar, A., & Turhollow, A. (2006). Development and implementation of integrated biomass supply analysis and logistics model (IBSAL). Biomass and Bioenergy, 30(10), 838–847.

    Article  Google Scholar 

  • States Environmental Protection Agency (EPA) (2014). EPA proposes 2014 renewable fuel standards, 2015 biomass-based diesel volume. http://www.epa.gov/otaq/fuels/renewablefuels/documents/420f13048.pdf.

  • Steuer, R. E. (1986). Multiple criteria optimization. Theory, computation and application (2nd ed.). London: Wiley.

    Google Scholar 

  • Steuer, R. E. (1997). Non-fully resolved questions about the efficient/nondominated set. In J. Climaco (Ed.), Multicriteria analysis. Berlin: Springer.

    Google Scholar 

  • Tunc, H., Eksioglu, B., Eksioglu, S. D., & Jin, M. (2011). Hub-based network design: A review. International Journal of Networking, 1(2), 17–24.

    Google Scholar 

  • United States Census Data. http://www.census.gov/2010census/.

  • United States Department of Agriculture (USDA) and United States Department of Energy (2008). National Biofuels Action Plan. Biomass Research and Development Board.

  • United States Department of Energy (2006). Office of the biomass program: Multi-year analysis plan FY04-FY08. http://www.nrel.gov/docs/fy05osti/36999.pdf.

  • United States Department of Energy: Office of Energy Efficiency and Renewable Energy (2007). Biomass Program Multi-Year Program Plan 2010.

  • United States Department of Energy (2011). U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry. R.D. Perlack and B.J. Stokes (Leads), ORNL/TM-2011/224. Oak Ridge National Laboratory, Oak Ridge, TN. 227p.

  • United States Department of Energy (2012). Bioenergy: Knowledge discovery framework. https://www.bioenergykdf.net/.

  • United States Energy Information Administration (2010). Monthly energy review. http://tonto.eia.doe.gov/FTPROOT/multifuel/mer/00351005.pdf.

  • United States Energy Information Administration (2013). Annual energy outlook: Energy markets summary. http://www.eia.gov/forecasts/steo/tables/pdf/1tab.pdf.

  • United States Environmental Protection Agency (EPA) (2007). Energy independence and security act of 2007. In: RL34294, P.L.110-140 ed. 2007.

  • United States Environmental Protection Agency (EPA) (2015). Renewable fuel standard: Proposed renewable fuel volumes for calendar years 2014, 2015, and 2016. http://www.epa.gov/otaq/fuels/renewablefuels/documents/420f15028.pdf.

  • Vitoriano, B., Ortuño, M. T., Tirado, G., & Montero, J. (2011). A multi-criteria optimization model for humanitarian aid distribution. European Journal of Global Optimization, 51(2), 189–208.

  • Yuan, F., Tao, L., Graziano, D. J., & Snyder, S. W. (2012). Optimal design of sustainable cellulosic biofuel supply chains: Multiobjective optimization coupled with life cycle assessment and input-output analysis. AIChE Journal, 58(4), 1547–5905.

    Google Scholar 

  • Yuan, F., & Wang, B. (2011). Life-cycle optimization of biomass-to-liquid supply chains with distributed-centralized processing networks. Industrial & Engineering Chemistry Research, 50(17), 10102–10127.

    Article  Google Scholar 

  • Wallace, R., Ibsen, K., McAloon, A., & Yee, W. (2005). Feasibility study for co-locating and integrating ethanol production plants from corn starch and lignocellulose feedstocks. NREL/TP-510-37092. USDA/USDOE/NREL, Revised Edition. Golden, Colorado

  • Zamboni, A., Bezzo, F., & Shah, N. (2009). Spatially explicit static model for the strategic design of future bioethanol production systems. 2. Multi-objective environmental optimization. Energy & Fuels, 23(10), 5134–5143.

    Article  Google Scholar 

  • Zhang, W., & Reimann, M. (2014). A simple augmented \(\upvarepsilon \)-constraint method for multi-objective mathematical integer programming problems. European Journal of Operational Research, 234(1), 15–24.

    Article  Google Scholar 

Download references

Acknowledgments

This work is partially supported by National Science Foundation, grant CMMI 1462420. This support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra D. Eksioglu.

Appendices

Appendix 1

See Table 7.

Table 7 The definitions of sets, parameters and decision variables used

Appendix 2

See Tables 8 and 9.

Table 8 Biorefinery locations
Table 9 Number of job created due to construction and operations of a biorefinery

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roni, M.S., Eksioglu, S.D., Cafferty, K.G. et al. A multi-objective, hub-and-spoke model to design and manage biofuel supply chains. Ann Oper Res 249, 351–380 (2017). https://doi.org/10.1007/s10479-015-2102-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-015-2102-3

Keywords

Navigation