Skip to main content
Log in

A perishable inventory system with service facility and feedback customers

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In this article, we consider a continuous review perishable inventory system with service facility consisting of finite waiting hall and a single server. The primary customers arrive according to a Markovian arrival process. An arriving customer, who finds the waiting hall is full, is considered to be lost. The individual customer’s unit demand is satisfied after a random time of service which is distributed as exponential. The life time of each item is assumed to be exponentially distributed. The items are replenished based on variable ordering policy. The lead time is assumed to have phase type distribution. After the service completion, the primary customer may decide either to join the secondary (feedback) queue, which is of infinite size, or leave the system according to a Bernoulli trial and the server decides to serve either for primary or feedback customer according to a Bernoulli trail. The primary and secondary service are at different counters. The service time for feedback customers is assumed to be independent exponential distribution. After the service completion for feedback customer, the server starts immediately for primary customer’s service, whenever the inventory level and the primary customer level is positive, otherwise the server becomes idle for an exponential duration. If the primary customer level and inventory level becomes positive during the server idle period then he starts service for primary customer immediately. After completing his idle period, the server goes to secondary counter to serve for feedback customer, if any. The joint probability distribution of the system is obtained in the steady state. Important system performance measures are derived and the long-run total expected cost rate is also calculated. The results are illustrated numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ali, O. M. E., & Netus, M. E. (1984). A service system with two stages of waiting and feedback customers. Journal of Applied Probability, 21, 404–413.

    Article  Google Scholar 

  • Amirthakodi, M., & Sivakumar, B. (2014). An inventory system with service facility and finite orbit size for feedback customers. OPSEARCH. doi:10.1007/s12597-014-0182-5.

  • Arivarignan, G. (1994). Perishable inventory systems with renewal demands and (\(-r\), \(S\)) ordering policy. In Third Ramanujan symposium on stochastic processes and applications. Ramanujan Institute for Advanced Studies in Mathematics, University of Madras, Chennai, pp. 211–220.

  • Arivarignan, G., & Sivakumar, B. (2003). Inventory system with renewal demands at service facilities. In S. K. Srinivasan & A. Vijayakumar (Eds.), Stochastic point processes (pp. 108–123). New Delhi: Narosa Publishing House.

    Google Scholar 

  • Arivarignan, G., Yadavalli, V. S. S., & Sivakumar, B. (2008). A perishable inventory system with multi-server service facility and retrial customers. In N. Ravichandran (Ed.), Management science and practice (pp. 3–27). New Delhi: Allied Publishers Pvt. Ltd.

    Google Scholar 

  • Berman, O., & Sapna, K. P. (2000). Inventory management at service facilities for systems with arbitrarily distributed service times. Stochastic Models, 16, 343–360.

    Article  Google Scholar 

  • Bijvank, M., & Vis, I. F. A. (2011). Lost-sales inventory theory: A review. European Journal of Operational Research, 215, 1–13.

    Article  Google Scholar 

  • Choi, B. D., Kim, Y. C., & Lee, Y. W. (1998). The \(M/M\)/\(c\) retrial queue with geometric loss and feedback. Computational and Mathematical Applications, 36, 41–52.

    Article  Google Scholar 

  • Goyal, S. K., & Giri, B. C. (2001). Recent trends in modeling of deteriorating inventory. European Journal of Operational Research, 34, 1–16.

    Article  Google Scholar 

  • Graves, S. C. (1982). The application of queueing theory to continuous perishable inventory systems. Management Sciences, 29, 400–406.

    Article  Google Scholar 

  • Horng Lina, C., & Chuan Keb, J. (2011). On the multi-server retrial queue with geometric loss and feedback: Computational algorithm and parameter optimization. International Journal of Computer Mathematics, 88, 1083–1101.

    Article  Google Scholar 

  • Kalpakam, S., & Arivarignan, G. (1985a). Analysis of an exhibiting inventory system. Stochastic Analysis and Applications, 3, 447–466.

    Article  Google Scholar 

  • Kalpakam, S., & Arivarignan, G. (1985b). A continuous review inventory system with arbitrary interarrival times between demands and an exhibiting item subject to random failure. Opsearch, 22, 153–168.

    Google Scholar 

  • Kalpakam, S., & Arivarignan, G. (1988). A continuous review perishable inventory model. Statistics, 19, 389–398.

    Article  Google Scholar 

  • Kalpakam, S., & Arivarignan, G. (1989). On exhibiting inventory system with Erlangian lifetimes under renewal demand. Annals of Statistics and Mathematics, 41, 601–616.

    Article  Google Scholar 

  • Kalpakam, S., & Sapna, K. P. (1994). Continuous review (\(s\), \(S\)) inventory system with stochastic lead times. Mathematical and Computational Modelling, 4, 915–1046.

    Google Scholar 

  • Kaspi, H., & Perry, D. (1983). Inventory systems of perishable commodities. Advances in Applied Probability, 15, 674–685.

    Article  Google Scholar 

  • Kaspi, H., & Perry, D. (1984). Inventory systems of perishable commodities with renewal input and poisson output. Advances in Applied Probability, 16, 402–421.

    Article  Google Scholar 

  • Krishna Kumar, B., Pavai Madheswari, S., & Vijayakumar, A. (2002). The \(M/G/1\) retrial queue with feedback and starting failures. Applied Mathematical Modeling, 26, 1057–1075.

    Article  Google Scholar 

  • Krishna Kumar, B., & Raja, J. (2006). On multiserver feedback retrial queues with balking and control retrial rate. Annals of Operations Research, 141, 211–232.

    Article  Google Scholar 

  • Krishna Kumar, B., Rukmani, R., & Thangaraj, V. (2009). On multiserver feedback retrial queue with finite buffer. Applied Mathematical Modelling, 33, 2062–2083.

    Article  Google Scholar 

  • Krishnamoorthy, A., Lakshmy, B., & Manikandan, R. (2011). A survey of inventory models with positive service time. Opsearch, 48, 153–169.

    Article  Google Scholar 

  • Kumaraswamy, S., & Sankarasubramanian, E. (1981). A continuous review of (\(S\)-\(s\)) inventory systems in which depletion due to demand and failure of units. Journal of Operational Research Society, 32, 997–1001.

    Google Scholar 

  • Latouche, G., & Ramaswami, V. (1993). A logarithmic reduction algorithm for qusai-birth and death process. Journal of Applied Probability, 30, 650–674.

    Article  Google Scholar 

  • Lemoine, Austin J. (1974). Some limiting results for a queueing model with feedback. Sankhya: The Indian Journal of statistic, 36, 293–304.

    Google Scholar 

  • Liu, L. (1990). (\(s\), \(S\)) continuous review models for inventory with random life times. Operations Research Letters, 9, 161–167.

    Article  Google Scholar 

  • Manoharan, M., & Krishnamoorthy, (1989). Markov renewal theoretic analysis of a perishable inventory system. Tankang Journal of Management Science, 10, 47–57.

    Google Scholar 

  • Manuel, P., Sivakumar, B., & Arivarignan, G. (2007). A perishable inventory system with service facilities, MAP arrivals and PH-service times. Journal of Systems Science and Systems Engineering, 16, 62–73.

    Article  Google Scholar 

  • Manuel, P., Sivakumar, B., & Arivarignan, G. (2008). A perishable inventory system with service facilities and retrial customers. Computers & Industrial Engineering, 54, 484–501.

    Article  Google Scholar 

  • Nahmias, S. (1982). Perishable inventory theory: A review. Operations Research, 30, 680–708.

    Article  Google Scholar 

  • Neuts, M. F. (1981). Matrix-geometric solutions in stochastic models: An algorithmic approach. Baltimore: Johns Hopkins University Press.

    Google Scholar 

  • Pal, M. (1990). An inventory model for deteriorating items when demand is random. Calcutta Statistical Association Bulletin, 39, 201–207.

    Google Scholar 

  • Pal, M., & Ghosh, S. K. (2004). An inventory model for deteriorating items allowing shortages. IAPQR Transactions, 29, 121–128.

    Google Scholar 

  • Perry, D., & Posner, M. J. M. (1990). Control of input and demand rates in inventory systems of perishable commodities. Naval Research Logistics, 37, 85–97.

    Article  Google Scholar 

  • Raafat, F. (1991). A survey of literature on continuously deteriorating inventory models. Journal of Operational Research Society, 42, 27–37.

    Article  Google Scholar 

  • Ravichandran, N. (1988). Probabilistic analysis of a continuous review perishable inventory system with markovian demand, erlangian life and non-instantaneous lead time. OR Spektrum, 10, 23–27.

    Article  Google Scholar 

  • Schmidt, C. P., & Nahmias, S. (1985). (\(s\), \(S\)) policies for perishable inventory. Management Sciences, 31, 719–728.

    Article  Google Scholar 

  • Shah, N. H., & Shah, Y. K. (2000). Literature survey on inventory models for deteriorating items. Ekonomski anali, 44, 221–237.

    Google Scholar 

  • Sivakumar, B. (2009). A perishable inventory system with retrial demands and a finite population. Journal of Computational and Applied Mathematics, 224, 29–38.

    Article  Google Scholar 

  • Sivakumar, B., & Arivarignan, G. (2006). A perishable inventory system at service facilities with negative customers. International Journal of Information and Management Sciences, 17, 1–18.

    Google Scholar 

  • Srinivasan, S. K. (1989). Analysis of (\(s\), \(S\)) inventory system with decaying items. Engineering Costs and Production Economics, 15, 433–439.

    Article  Google Scholar 

  • Takacs, L. (1963). A single server queue with feedback. Bell System Technical Journal, 42, 505–519.

    Article  Google Scholar 

  • Thangaraj, V., & Santhakumaran, A. (1994). Sojourn times in queues with a pair of instantaneous independent bernoulli feedback. Optimization, 29, 281–294.

    Article  Google Scholar 

  • Thangaraj, V., & Vanitha, S. (2010). A single server \(M/G/1\) feedback queue with two type of service having general distribution. International Mathematical Forum, 5, 15–33.

    Google Scholar 

  • Weiss, H. J. (1980). Optimal ordering policies for continuous review perishable inventory models. Operations Research, 28, 365–374.

    Article  Google Scholar 

  • Yadavalli, V. S. S., Sivakumar, B., Arivarignan, G., & Adetunji, Olufemi. (2011). A multi-server perishable inventory system with negative customer. Computers & Industrial Engineering, 61, 254–273.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Amirthakodi.

Additional information

M. Amirthakodi: The research is supported by University Grants Commission—Rajiv Gandhi National Fellowship, New Delhi, research award No. F. 14-2(SC)/2010 (SA-III).

B. Sivakumar: The research is supported by the National Board for Higher Mathematics, India, research award 2/48(4)/2011/-R&D III/4721.

Appendix

Appendix

\(\text {For }i\in E^{2}_{s},\)

$$\begin{aligned}&\left[ \tilde{C}_{i}\right] _{kl} = \left\{ \begin{array}{ll} \tilde{C}_{1}^{(i)}, &{} \quad l=k-1; \ k\in E^{2}_{N}\\ {\mathbf {0}}, &{}\quad \text {otherwise}. \\ \end{array} \right. ,\quad \left[ \tilde{C}_{1}^{(i)}\right] _{kl} = \left\{ \begin{array}{ll} qp_1 \mu _1 I_{m_1 m_2}, &{}\quad l=k; \ k\in E^{1}_{s+1-i}\\ {\mathbf {0}}, &{}\quad \text {otherwise}. \\ \end{array} \right. \\&\tilde{C}_{s+1}=I_{N}\otimes (qp_1 \mu _1 I_{m_1}\otimes \alpha ); \qquad \tilde{C}_{s+2}=I_{N}\otimes (qp_1\mu _1 I_{m_1});\\&\left[ B_{12}^{(0)}\right] _{ij} = \left\{ \begin{array}{ll} \tilde{L}_{i},&{}\quad j=i-1; \ i\in E^{1}_{s+1}\\ \tilde{L}_{s+2},&{}\quad j=i-1; \ i \in E^{s+2}_{S}\\ {\mathbf {0}}, &{}\quad \text {otherwise}. \\ \end{array} \right. \\&\left[ \tilde{L}_{1}\right] _{kl} = \left\{ \begin{array}{ll} \tilde{L}_{1}^{(1)},&{}\quad l=k-1; \ k\in E^{1}_{N}\\ {\mathbf {0}}, &{}\quad \text {otherwise}. \\ \end{array} \right. , \quad \left[ \tilde{L}_{1}^{(1)}\right] _{kl} = \left\{ \begin{array}{ll} p_1\mu _1 I_{m_1m_2},&{}\quad l=k+1; \ k\in E^{1}_{s}\\ {\mathbf {0}}, &{}\quad \text {otherwise}. \\ \end{array} \right. \end{aligned}$$

\(\text {For }i\in E^{2}_{s}\)

\(\text {For }j\in E^{Q}_{S},\)

$$\begin{aligned} \left[ G_{j} \right] _{kl}= & {} \left\{ \begin{array}{ll} G_1^{(j)},&{} \quad l=k; \ k\in E^{1}_N\\ {\mathbf {0}}, &{}\quad \text {otherwise}. \\ \end{array} \right. ,\quad G_1^{(j)}= {\mathbf {e}}_{(s+1)}{(j-Q+1)}\otimes \left( I_{m_1}\otimes T^0\right) . \end{aligned}$$

\(\text {For }i\in E^{1}_{s}\),

$$\begin{aligned} G_i= & {} {\mathbf {e}}_{N}^{'}(1)\otimes G_1^{(i)}; \quad G_1^{(i)}=I_{(s+1-i)}\otimes (D_1\otimes I_{m_2}); \quad G_{s+1}= {\mathbf {e}}_{N}^{'}(1)\otimes D_1;\\ \left[ B_{00}^{(1)} \right] _{ij}= & {} \left\{ \begin{array}{ll} F_{i}, &{} \quad j=i; \ i\in E^{0}_{S}\\ F_{ii-1}, &{}\quad j=i-1; \ i\in E^{1}_{S}\\ F_{ij}, &{}\quad j\in E^{Q+i}_{S}; \ i\in E^{0}_{s}\\ {\mathbf {0}}, &{}\quad \text {otherwise}. \\ \end{array} \right. \end{aligned}$$

\(\text {For }j\in E^{Q}_{S},\)

$$\begin{aligned} F_1^{(0j)}= & {} {\mathbf {e}}_{(s+1)}{(j-Q+1)}\otimes \left( I_{m_1}\otimes T^0\right) , \quad F_{0j} = I_{(N+1)}\otimes F_1^{(0j)} \end{aligned}$$

\(\text {For } i\in E^{1}_{s}, \quad j\in E^{Q+i}_{S},\)

$$\begin{aligned} F_{ij}= & {} {\mathbf {e}}_{(s+1-i)}{(j-Q+1)}\otimes \left( I_{m_1}\otimes T^{0}\right) ,\quad F_{10}={\mathbf {e}}_{(N+1)}^{'}(1)\otimes F_{0}^{(10)}\\ \left[ F_{0}^{(10)} \right] _{ij}= & {} \left\{ \begin{array}{ll} \gamma I_{m_1m_2}, &{} \quad j=i; \ i\in E^{1}_{s}\\ {\mathbf {0}}, &{}\quad \text {otherwise}. \\ \end{array} \right. \end{aligned}$$

\(\text {For }i\in E^{2}_{s}\),

$$\begin{aligned} \left[ F_{ii-1} \right] _{kl}= & {} \left\{ \begin{array}{ll} i\gamma I_{m_1m_2}, &{} \quad l=k; \ k\in E^{1}_{s+1-i}\\ {\mathbf {0}}, &{}\quad \text {otherwise}. \\ \end{array} \right. ,\quad F_{s+1, s} = (s+1)\gamma I_{m_1}\otimes \alpha \end{aligned}$$

\(\text {For }i\in E^{s+2}_{S}, \qquad F_{ii-1}=i\gamma I_{m_1}\)

$$\begin{aligned} \left[ F_0\right] _{ij}= & {} \left\{ \begin{array}{ll} F_1^{(0)}, &{} \quad j=i; \ i\in E^{0}_{N-1}\\ F_{2}^{(0)}, &{}\quad j=i; \ i=N\\ F_3^{(0)}, &{}\quad j=i+1; \ i\in E^{0}_{N-1}\\ {\mathbf {0}}, &{}\quad \text {otherwise}. \\ \end{array} \right. ,\quad F_1^{(0)}=I_{(s+1)}\otimes (D_0\oplus T); \\ F_2^{(0)}= & {} I_{(s+1)}\otimes (D\oplus T); \qquad F_3^{(0)} = I_{(s+1)}\otimes (D_1\otimes I_{m_2}). \end{aligned}$$

\(\text {For }i\in E^{1}_{s}, \qquad F_{i}=I_{(s+1-i)}\otimes (D_0\oplus T-i\gamma I_{m_1m_2})\)

\(\text {For }i\in E^{s+1}_{S}, \qquad F_i=D_0-i\gamma I_{m_1}\)

$$\begin{aligned} \left[ B_{10}^{(1)}\right] _{ij}= & {} \left\{ \begin{array}{ll} H_i, &{} \quad j=i; \ i\in E^{1}_{s+1}\\ H_{s+2}, &{}\quad j=i; \ i\in E^{s+2}_{S}\\ {\mathbf {0}}, &{}\quad \text {otherwise}. \\ \end{array} \right. ,\quad \left[ H_{1}\right] _{ij}=\left\{ \begin{array}{ll} H_1^{(1)}, &{}\quad j=i-1; \ i\in E^{1}_{N}\\ H_2^{(1)}, &{} \quad j=i; \ i\in E^{1}_{N}\\ {\mathbf {0}}, &{}\quad \text {otherwise}. \\ \end{array} \right. \\ \left[ H_{1}^{(1)}\right] _{ij}= & {} \left\{ \begin{array}{ll} \bar{p}_1\mu _1 I_{m_1m_2}, &{}\quad j=i; \ i\in E^{1}_{s}\\ {\mathbf {0}}, &{}\quad \text {otherwise}. \\ \end{array} \right. ,\quad \left[ H_{2}^{(1)}\right] _{ij}=\left\{ \begin{array}{ll} \gamma I_{m_1m_2}, &{} \quad j=i; \ i\in E^{1}_{s}\\ {\mathbf {0}}, &{}\quad \text {otherwise}. \\ \end{array} \right. \end{aligned}$$

\(\text {For }i\in E^{2}_{s}\),

$$\begin{aligned} H_i= & {} {\mathbf {e}}_{N}(1)\otimes H_1^{(i)}, \quad \left[ H_{1}^{(i)}\right] _{ij}=\left\{ \begin{array}{ll} \bar{p}_1\mu _1 I_{m_1m_2}, &{}\quad j=i; \ i\in E^{1}_{s+1-i}\\ {\mathbf {0}}, &{}\quad \text {otherwise}. \\ \end{array} \right. \\ H_{s+1}= & {} {\mathbf {e}}_{N}(1)\otimes (\bar{p}_1 \mu _1 I_{m_1}\otimes \alpha ); \quad H_{s+2}={\mathbf {e}}_{N}(1)\otimes (\bar{p}_1 \mu _1 I_{m_1});\\ \left[ B_{11}^{(1)}\right] _{ij}= & {} \left\{ \begin{array}{ll} K_i, &{} \quad j=i; \ i\in E^1_S\\ K_{ii-1}, &{}\quad j=i-1; \ i\in E^2_S\\ K_{ij}, &{} \quad j\in E^{Q+i}_S; \ i\in E^1_s\\ {\mathbf {0}}, &{}\quad \text {otherwise}. \\ \end{array} \right. \end{aligned}$$

\(\text {For } i\in E^1_s, \qquad j\in E^{Q+i}_{S};\)

$$\begin{aligned} K_1^{(ij)}= & {} {\mathbf {e}}_{(s+1-i)}{(j-Q+1)} \otimes \left( I_{m_1}\otimes T^{0}\right) ; \quad K_{ij}= I_{(N)} \otimes K_1^{(ij)} \end{aligned}$$

\(\text {For }i\in E^2_s,\)

$$\begin{aligned} \left[ K_{ii-1}\right] _{kl}= & {} \left\{ \begin{array}{lll} K_2^{(i,i-1)}, &{}\quad l=k; &{} k\in E^1_N\\ K_1^{(i,i-1)}, &{}\quad l=k-1; &{} k\in E^2_N\\ {\mathbf {0}}, &{}\quad \text {otherwise}. \\ \end{array} \right. \\ \left[ K_{1}^{(i,i-1)}\right] _{kl}= & {} \left\{ \begin{array}{lll} \bar{p}_1\mu _1 I_{m_1m_2}, &{} \quad l=k; &{} k\in E^1_{s+1-i}\\ {\mathbf {0}}, &{} \quad \text {otherwise}. \\ \end{array} \right. \\ \left[ K_{2}^{(i,i-1)}\right] _{kl}= & {} \left\{ \begin{array}{lll} i\gamma I_{m_1m_2}, &{}\quad l=k; &{} k\in E^1_{s+1-i}\\ {\mathbf {0}}, &{}\quad \text {otherwise}. \\ \end{array} \right. \\ \left[ K_{s+1s}\right] _{kl}= & {} \left\{ \begin{array}{lll} (s+1)\gamma I_{m_1}\otimes \alpha , &{}\quad l=k; &{} k\in E^{1}_{N}\\ \bar{p}_1\mu _1 I_{m_1}\otimes \alpha , &{}\quad l=k-1; &{} k\in E^{2}_{N}\\ {\mathbf {0}}, &{} \quad \text {otherwise}. \\ \end{array} \right. \end{aligned}$$

\(\text {For }i\in E^{s+2}_{S},\)

$$\begin{aligned} \left[ K_{ii-1}\right] _{kl}= & {} \left\{ \begin{array}{lll} i\gamma I_{m_1}, &{}\quad l=k; &{} k\in E^{1}_{N}\\ \bar{p}_1\mu _1 I_{m_1}, &{}\quad l=k-1; &{} k\in E^{2}_{N}\\ {\mathbf {0}}, &{}\quad \text {otherwise}. \\ \end{array} \right. \end{aligned}$$

\(\text {For }i\in E^1_s,\)

$$\begin{aligned} \left[ K_{i}\right] _{kl}= & {} \left\{ \begin{array}{lll} K_1^{(i)}, &{}\quad l=k; &{}\quad k\in E^1_{N-1}\\ K_2^{(i)}, &{}\quad l=k; &{}\quad k=N\\ K_3^{(i)}, &{}\quad l=k+1; &{} \quad k\in E^1_{N-1}\\ {\mathbf {0}}, &{}\quad \text {otherwise}. \\ \end{array} \right. ,\quad K_3^{(i)}= I_{(s+1-i)}\otimes (D_1\otimes I_{m_2})\\ K_1^{(i)}= & {} I_{(s+1-i)}\otimes \left( D_0\oplus T-(\mu _1+i\gamma )I_{m_1m_2}\right) ; \\ K_2^{(i)}= & {} I_{(s+1-i)}\otimes \left( D\oplus T-(\mu _1+i\gamma )I_{m_1m_2}\right) \end{aligned}$$

\(\text {For }i\in E^{s+1}_{S}\),

\(\text {For }i\in E^{2}_{s},\)

$$\begin{aligned} \left[ C_1^{(i)}\right] _{kl}= & {} \left\{ \begin{array}{lll} p_2\mu _2 I_{m_1m_2}, &{} \quad l=k-1; &{}\quad k\in E^2_{s+2-i}\\ p_2\mu _2 I_{m_1}\otimes \alpha , &{}\quad l=s+1-i; &{}\quad k=1\\ {\mathbf {0}},&{} \quad \text {otherwise}. \\ \end{array} \right. ,\quad C_i={\mathbf {e}}_{(N+1)}(1) \otimes C_1^{(i)}\\ C_{s+1}= & {} {\mathbf {e}}_{(N+1)}(1) \otimes (p_2\mu _2 I_{m_1}); \quad \left[ A_{21}^{(0)}\right] _{ij}=\left\{ \begin{array}{lll} L_{i-1}, &{}\quad j=i; &{}\quad i\in E^{1}_{s+1}\\ L_{s+1}, &{} \quad j=i; &{} \quad i\in E^{s+1}_{S}\\ {\mathbf {0}}, &{}\quad \text {otherwise}. \\ \end{array} \right. \end{aligned}$$

\(\text {For }i\in E^{1}_{s},\)

\(\text {For }i\in E^{1}_s,\)

$$\begin{aligned} \left[ M_1^{(i)}\right] _{kl}= & {} \left\{ \begin{array}{lll} \bar{p}_2\mu _2 I_{m_1m_2}, &{}\quad l=k-1; &{} \quad k\in E^2_{s+2-i}\\ \bar{p}_2\mu _2 I_{m_1}\otimes \alpha , &{}\quad l=s+1-i; &{}\quad k=1\\ {\mathbf {0}}, &{}\quad \text {otherwise}. \\ \end{array} \right. ,\quad M_i= {\mathbf {e}}_{(N+1)}(1) \otimes M_1^{(i)}\\ M_{s+1}= & {} {\mathbf {e}}_{(N+1)}(1)\otimes \left( \bar{p}_2\mu _2 I_{m_1}\right) ; \quad \left[ B_{21}^{(2)}\right] _{ij}=\left\{ \begin{array}{lll} P_{i-1}, &{}\quad j=i; &{}\quad i\in E^{1}_{s}\\ P_{s+1}, &{}\quad j=i-1; &{}\quad i\in E^{s+1}_{S}\\ {\mathbf {0}}, &{}\quad \text {otherwise}. \\ \end{array} \right. \end{aligned}$$

\(\text {For }i\in E^1_s,\)

\(\text {For }i\in E^1_s,\)

$$\begin{aligned} \left[ R_1^{(i)}\right] _{ij}= & {} \left\{ \begin{array}{ll} \theta I_{m_1m_2}, &{}\quad j=i+1; \ i\in E^1_{s+1-i}\\ {\mathbf {0}}, &{}\quad \text {otherwise}. \\ \end{array} \right. ,\quad R_i={\mathbf {e}}_{(N+1)}^{'}(1)\otimes R_1^{(i)}\\ R_{s+1}= & {} {\mathbf {e}}_{(N+1)}^{'}(1)\otimes (\theta I_{m_1});\\ \left[ A_{00}^{(1)}\right] _{ij}= & {} \left\{ \begin{array}{ll} U_i, &{} \quad j=i; \ i\in E^0_S\\ F_{ii-1}, &{}\quad j=i-1; \ i\in E^1_S\\ F_{ij}&{}\quad j\in E^{Q+i}_S; \ i\in E^0_s\\ {\mathbf {0}}, &{}\quad \text {otherwise}. \\ \end{array} \right. ,\quad \left[ U_0\right] _{ij}=\left\{ \begin{array}{ll} U_1^{(0)}, &{}\quad j=i; \ i\in E^0_{N-1}\\ U_2^{(0)}, &{}\quad j=i; \ i=N\\ F_3^{(0)}, &{} \quad j=i+1; \ i\in E^0_{N-1}\\ {\mathbf {0}}, &{}\quad \text {otherwise}. \\ \end{array} \right. \\ U_1^{(0)}= & {} I_{(s+1)}\otimes \left( D_0\oplus T-\theta I_{m_1m_2}\right) ; \qquad U_2^{(0)} = I_{(s+1)}\otimes \left( D\oplus T-\theta I_{m_1m_2}\right) ; \end{aligned}$$

\(\text {For }i\in E^1_s, \qquad U_{i}= I_{(s+1-i)}\otimes (D_0\oplus T-(\theta +i\gamma )I_{m_1m_2});\)

\(\text {For }i\in E^{s+1}_{S}, \qquad U_{i}=D_0-(\theta +i\gamma )I_{m_1};\)

$$\begin{aligned} \left[ A_{12}^{(1)}\right] _{ij}= & {} \left\{ \begin{array}{ll} V_i, &{}\quad j=i; \ \ i\in E^1_{s+1}\\ V_{s+1}, &{}\quad j=i; \ \ i\in E^{s+2}_{S}\\ {\mathbf {0}}, &{}\quad \text {otherwise}. \\ \end{array} \right. ,\quad \left[ V_1\right] _{ij}=\left\{ \begin{array}{ll} V_1^{(1)}, &{}\quad j=i-1; \ \ i\in E^1_{N}\\ V_{2}^{(1)}, &{} \quad j=i; \ \ i\in E^{1}_{N}\\ {\mathbf {0}}, &{}\quad \text {otherwise}. \\ \end{array} \right. \\ \left[ V_1^{(1)}\right] _{ij}= & {} \left\{ \begin{array}{ll} \bar{p}_1\mu _1 I_{m_1m_2}, &{}\quad j=i+1; \ \ i\in E^1_s\\ {\mathbf {0}}, &{}\quad \text {otherwise}. \\ \end{array} \right. ,\quad \left[ V_2^{(1)}\right] _{ij}=\left\{ \begin{array}{ll} \gamma I_{m_1m_2}, &{}\quad j=i; \ \ i\in E^1_s\\ {\mathbf {0}}, &{}\quad \text {otherwise}. \\ \end{array} \right. \end{aligned}$$

\(\text {For }i\in E^2_s,\)

$$\begin{aligned}&\left[ V_i\right] _{ij}=\left\{ \begin{array}{ll} V_1^{(i)}, &{}\quad j=i-1; \ i=1\\ V_2^{(i)}, &{} \quad j=i-1; \ i\in E^2_N\\ {\mathbf {0}}, &{}\quad \text {otherwise}. \\ \end{array} \right. ,\quad \left[ V_1^{(i)}\right] _{kl}\!=\!\left\{ \begin{array}{ll} \bar{p}_1\mu _1 I_{m_1m_2}, &{}\quad l\!=\!k\!+\!1; \ \ k\in E^1_{s+1-i}\\ {\mathbf {0}}, &{}\quad \text {otherwise}. \\ \end{array} \right. \\&\left[ V_2^{(i)}\right] _{kl}=\left\{ \begin{array}{ll} \bar{q}\bar{p}_1 \mu _1 I_{m_1m_2}, &{}\quad l=k+1; \ \ l\in E^1_{s+1-i}\\ {\mathbf {0}}, &{} \quad \text {otherwise}. \\ \end{array} \right. \\&\left[ V_{s+1}\right] _{ij}=\left\{ \begin{array}{ll} V_1^{(s+1)}, &{} \quad j=i-1; \ \ i=1\\ V_2^{(s+1)}, &{}\quad j=i-1; \ \ i\in E^2_N\\ {\mathbf {0}}, &{}\quad \text {otherwise}. \\ \end{array} \right. ,\quad V_1^{(s+1)}={\mathbf {e}}_{2}^{'}(2)\otimes \left( \bar{p}_1\mu _1 I_{m_1}\otimes \alpha \right) ; \\&V_2^{(s+1)}={\mathbf {e}}_{2}^{'}(2)\otimes \left( \bar{q}\bar{p}_1\mu _1 I_{m_1}\otimes \alpha \right) ; \quad \left[ V_{s+2}\right] _{ij}=\left\{ \begin{array}{ll} \bar{p}_1\mu _1 I_{m_1}, &{} \quad j=i-1; \ \ i=1\\ \bar{q}\bar{p}_1\mu _1 I_{m_1}, &{}\quad j=i-1; \ \ i\in E^2_N\\ {\mathbf {0}}, &{}\quad \text {otherwise}. \\ \end{array} \right. \\&\left[ A_{11}^{(1)}\right] _{ij}=\left\{ \begin{array}{lll} K_i, &{} \quad j=i; &{} \quad i\in E^1_S\\ W_{ii-1}, &{} \quad j=i-1; &{}\quad i\in E^2_S\\ K_{ij} &{} \quad j \in E^{Q+i}_S; &{}\quad i\in E^1_s\\ {\mathbf {0}}, &{}\quad \text {otherwise}. \\ \end{array} \right. \end{aligned}$$

\(\text {For }i\in E^2_s,\)

$$\begin{aligned} \left[ W_{ii-1}\right] _{kl}= & {} \left\{ \begin{array}{lll} K_2^{(i,i-1)}, &{}\quad l=k; &{} \quad k\in E^1_N\\ W_1^{(i,i-1)}, &{}\quad l=k-1; &{}\quad k\in E^2_N\\ {\mathbf {0}}, &{}\quad \text {otherwise}. \\ \end{array} \right. \\ \left[ W_1^{(i,i-1)}\right] _{kl}= & {} \left\{ \begin{array}{lll} q\bar{p}_1 \mu _1 I_{m_1m_2}, &{} \quad l=k; &{}\quad k\in E^1_{s+1-i}\\ {\mathbf {0}}, &{}\quad \text {otherwise}. \\ \end{array} \right. \\ \left[ W_{s+1s}\right] _{kl}= & {} \left\{ \begin{array}{lll} (s+1)\gamma I_{m_1}\otimes \alpha , &{} \quad l=k; &{} \quad k\in E^1_N\\ q\bar{p}_1 \mu _1 I_{m_1}\otimes \alpha , &{}\quad l=k-1; &{} \quad k\in E^2_{N}\\ {\mathbf {0}}, &{} \quad \text {otherwise}. \\ \end{array} \right. \end{aligned}$$

\(\text {For }i\in E^{s+2}_S,\)

$$\begin{aligned} \left[ W_{ii-1}\right] _{kl}= & {} \left\{ \begin{array}{lll} i\gamma I_{m_1}, &{} \quad l=k; &{}\quad k\in E^1_N\\ q\bar{p}_1 \mu _1 I_{m_1}, &{}\quad l=k-1; &{}\quad k\in E^2_{N}\\ {\mathbf {0}}, &{}\quad \text {otherwise}. \\ \end{array} \right. \\ \left[ A_{22}^{(1)}\right] _{ij}= & {} \left\{ \begin{array}{lll} Z_i, &{} \quad j=i; &{}\quad i\in E^0_S\\ Z_{ii-1}, &{}\quad j=i-1; &{} \quad i\in E^1_S\\ Z_{ij}, &{}\quad j \in E^{Q+i}_S; &{} \quad i\in E^0_s\\ {\mathbf {0}}, &{}\quad \text {otherwise}. \\ \end{array} \right. \end{aligned}$$

\(\text {For }j\in E^Q_S\)

$$\begin{aligned} Z_{0j}= & {} I_{(N+1)}\otimes Z_1^{(0j)}; \quad Z_1^{(0j)}={\mathbf {e}}_{(s+2)}(i-Q+2) \otimes \left( I_{m_1}\otimes T^0\right) ; \end{aligned}$$

\(\text {For }i\in E^1_s; \qquad j\in E^{Q+i}_S;\)

$$\begin{aligned} Z_{ij}= & {} I_{(N+1)}\otimes Z_1^{(ij)}; \quad Z_1^{(ij)}={\mathbf {e}}_{(s+2-i)} (j-Q+2) \otimes \left( I_{m_1}\otimes T^0\right) ; \end{aligned}$$

\(\text {For }i\in E^1_s;\)

$$\begin{aligned} \left[ Z_1^{(i,i-1)}\right] _{kl}= & {} \left\{ \begin{array}{ll} i\gamma I_{m_1}, &{}\quad l=k; \ \ k=1\\ i\gamma I_{m_1m_2}, &{}\quad l=k; \ \ k\in E^2_{s+2-i}\\ {\mathbf {0}}, &{}\quad \text {otherwise}. \\ \end{array} \right. ,\quad Z_{ii-1}=I_{(N+1)}\otimes Z_1^{(i,i-1)}\\ Z_{s+1s}= & {} I_{(N+1)}\otimes \left( {\mathbf {e}}_{2}^{'}(1)\otimes (s+1)\gamma I_{m_1}\right) \\ \end{aligned}$$

\(\text {For }i\in E^{s+2}_{S}; \qquad Z_{ii-1}= I_{(N+1)}\otimes i\gamma I_{m_1}\);

$$\begin{aligned}&\left[ Z_0\right] _{ij}=\left\{ \begin{array}{ll} Z_1^{(0)}, &{}\quad j=i; \ \ i\in E^{0}_{N-1}\\ Z_2^{(0)}, &{}\quad j=i; \ \ i=N\\ Z_3^{(0)}, &{}\quad j=i+1; \ \ i\in E^{0}_{N-1} \\ {\mathbf {0}}, &{}\quad \text {otherwise}. \\ \end{array} \right. ,\quad \left[ Z_1^{(0)}\right] _{ij}=\left\{ \begin{array}{ll} D_0-\mu _2 I_{m_1}, &{}\quad j=i; \ \ i=1\\ D_0\oplus T-\mu _2 I_{m_1m_2}, &{}\quad j=i; \ \ i\in E^2_{s+2}\\ {\mathbf {0}}, &{}\quad \text {otherwise}. \\ \end{array} \right. \\&\left[ Z_3^{(0)}\right] _{ij}=\left\{ \begin{array}{ll} D_1, &{} \quad j=i; \ \ i=1\\ D_1\otimes I_{m_2}, &{}\quad j=i; \ \ i\in E^2_{s+2}\\ {\mathbf {0}}, &{}\quad \text {otherwise}. \\ \end{array} \right. ,\quad \left[ Z_2^{(0)}\right] _{ij}=\left\{ \begin{array}{ll} D-\mu _2 I_{m_1}, &{} \quad j=i; \ \ i=1\\ D\oplus T-\mu _2 I_{m_1m_2}, &{}\quad j=i; \ \ i\in E^2_{s+2}\\ {\mathbf {0}}, &{}\quad \text {otherwise}. \\ \end{array} \right. \end{aligned}$$

\(\text {For }i\in E^1_s,\)

$$\begin{aligned}&\left[ Z_i\right] _{kl}=\left\{ \begin{array}{ll} Z_1^{(i)}, &{}\quad l=k; \ \ k \in E^{0}_{N-1} \\ Z_2^{(i)}, &{} \quad l=k; \ \ k=N \\ Z_3^{(i)}, &{} \quad l=k+1; \ \ k\in E^{0}_{N-1} \\ {\mathbf {0}}, &{}\quad \text {otherwise}. \\ \end{array} \right. ,\quad \left[ Z_3^{(i)}\right] _{kl}=\left\{ \begin{array}{ll} D_1, &{}\quad l=k; \ \ k=1\\ D_1\otimes I_{m_2}, &{}\quad l\!=\!k; \ \ k\!\in \! E^2_{s+2-i}\\ {\mathbf {0}}, &{} \quad \text {otherwise}. \\ \end{array} \right. \\&\left[ Z_1^{(i)}\right] _{kl}=\left\{ \begin{array}{lll} D_0-(\mu _2+i\gamma ) I_{m_1}, &{} \quad l=k; &{}\quad k=1\\ D_0\oplus T-(\mu _2+i\gamma ) I_{m_1m_2}, &{}\quad l=k; &{}\quad k\in E^2_{s+2-i}\\ {\mathbf {0}}, &{}\quad \text {otherwise}. \\ \end{array} \right. \\&\left[ Z_2^{(i)}\right] _{kl}=\left\{ \begin{array}{lll} D-(\mu _2+i\gamma ) I_{m_1}, &{} \quad l=k; &{} \quad k=1 \\ D\oplus T-(\mu _2+i\gamma ) I_{m_1m_2},&{}\quad l=k; &{}\quad k\in E^2_{s+2-i}\\ {\mathbf {0}}, &{} \quad \text {otherwise}. \\ \end{array} \right. \end{aligned}$$

\(\text {For }i\in E^{s+1}_{S},\)

$$\begin{aligned} \left[ Z_i\right] _{kl}= & {} \left\{ \begin{array}{lll} D_0-(\mu _2+i\gamma )I_{m_1}, &{} \quad l=k; &{}\quad k\in E^{0}_{N-1}\\ D-(\mu _2+i\gamma )I_{m_1}, &{} \quad l=k; &{}\quad k=N \\ D_1, &{}\quad l=k+1; &{} \quad k\in E^{0}_{N-1} \\ {\mathbf {0}}, &{} \quad \text {otherwise}. \\ \end{array} \right. \end{aligned}$$

See Tables 14 and 15.

Table 14 The submatrices and their dimensions
Table 15 The submatrices and their dimensions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amirthakodi, M., Radhamani, V. & Sivakumar, B. A perishable inventory system with service facility and feedback customers. Ann Oper Res 233, 25–55 (2015). https://doi.org/10.1007/s10479-015-1821-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-015-1821-9

Keywords

Navigation