Skip to main content
Log in

Multisource Bayesian sequential binary hypothesis testing problem

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

We consider the problem of testing two simple hypotheses about unknown local characteristics of several independent Brownian motions and compound Poisson processes. All of the processes may be observed simultaneously as long as desired before a final choice between hypotheses is made. The objective is to find a decision rule that identifies the correct hypothesis and strikes the optimal balance between the expected costs of sampling and choosing the wrong hypothesis. Previous work on Bayesian sequential hypothesis testing in continuous time provides a solution when the characteristics of these processes are tested separately. However, the decision of an observer can improve greatly if multiple information sources are available both in the form of continuously changing signals (Brownian motions) and marked count data (compound Poisson processes). In this paper, we combine and extend those previous efforts by considering the problem in its multisource setting. We identify a Bayes optimal rule by solving an optimal stopping problem for the likelihood-ratio process. Here, the likelihood-ratio process is a jump-diffusion, and the solution of the optimal stopping problem admits a two-sided stopping region. Therefore, instead of using the variational arguments (and smooth-fit principles) directly, we solve the problem by patching the solutions of a sequence of optimal stopping problems for the pure diffusion part of the likelihood-ratio process. We also provide a numerical algorithm and illustrate it on several examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Beibel, M., & Lerche, H. (1997). A new look at optimal stopping problems related to mathematical finance. Statistica Sinica, 7, 93–108.

    Google Scholar 

  • Beibel, M., & Lerche, H. (2001). Optimal stopping of regular diffusions under random discounting. Theory of Probability and Its Applications, 45(4), 547–557.

    Article  Google Scholar 

  • Blackwell, D., & Girshick, M. A. (1979). Theory of games and statistical decisions. New York: Dover. Reprint of the 1954 edition.

    Google Scholar 

  • Borodin, A. N., & Salminen, P. (1996). Handbook of Brownian motion—facts and formulae. Basel: Birkhäuser.

    Book  Google Scholar 

  • Christensen, S., & Irle, A. (2011). A harmonic function technique for the optimal stopping of diffusions. Stochastics, 83(4–6), 347–363.

    Google Scholar 

  • Cissé, M., Patie, P., & Tanré, E. (2012). Optimal stopping problems for some Markov processes. The Annals of Applied Probability, 33(3), 1243–1265.

    Article  Google Scholar 

  • Dayanik, S. (2008). Optimal stopping of linear diffusions with random discounting. Mathematics of Operations Research, 33(3), 645–661.

    Article  Google Scholar 

  • Dayanik, S., & Karatzas, I. (2003). On the optimal stopping problem for one-dimensional diffusions. Stochastic Processes and Their Applications, 107(2), 173–212.

    Article  Google Scholar 

  • Dayanik, S., Poor, H. V., & Sezer, S. O. (2008a). Multisource Bayesian sequential change detection. The Annals of Applied Probability, 18(2), 552–590.

    Article  Google Scholar 

  • Dayanik, S., Poor, H. V., & Sezer, S. O. (2008b). Sequential multi-hypothesis testing for compound Poisson processes. Stochastics, 80(1), 19–50.

    Google Scholar 

  • Dayanik, S., & Sezer, S. O. (2006). Sequential testing of simple hypotheses about compound Poisson processes. Stochastic Processes and Their Applications, 116, 1892–1919.

    Article  Google Scholar 

  • Dragalin, V. P., Tartakovsky, A. G., & Veeravalli, V. V. (1999). Multihypothesis sequential probability ratio tests. I. Asymptotic optimality. IEEE Transactions on Information Theory, 45(7), 2448–2461.

    Article  Google Scholar 

  • Dragalin, V. P., Tartakovsky, A. G., & Veeravalli, V. V. (2000). Multihypothesis sequential probability ratio tests. II. Accurate asymptotic expansions for the expected sample size. IEEE Transactions on Information Theory, 46(4), 1366–1383.

    Article  Google Scholar 

  • Ernisse, B., Rogers, S., DeSimio, M., & Raines, R. (1997). Complete automatic target recognition system for tactical forward-looking infrared images. Optical Engineering, 36(9), 2593–2603.

    Article  Google Scholar 

  • Fu, K. (1968). Sequential methods in pattern recognition and learning. New York: Academic Press.

    Google Scholar 

  • Gapeev, P. V. (2002). Problems of the sequential discrimination of hypotheses for compound Poisson process with exponential jumps. The Annals of Applied Probability, 57(6), 171–172.

    Google Scholar 

  • Karlin, S., & Taylor, H. M. (1981). A second course in stochastic processes. New York: Academic Press [Harcourt Brace Jovanovich Publishers].

    Google Scholar 

  • Lai, T. L. (2000). Sequential multiple hypothesis testing and efficient fault detection-isolation in stochastic systems. IEEE Transactions on Information Theory, 46(2), 595–608.

    Article  Google Scholar 

  • Lai, T. L. (2001). Sequential analysis: some classical problems and new challenges. Statistica Sinica, 11(2), 303–408. With comments and a rejoinder by the author.

    Google Scholar 

  • Lorden, G. (1977). Nearly-optimal sequential tests for finitely many parameter values. Annals of Statistics, 5(1), 1–21.

    Article  Google Scholar 

  • Ludkovski, M., & Sezer, S. O. (2012). Finite horizon decision timing with partially observable Poisson processes. Stochastic Models, 28(2), 207–247.

    Article  Google Scholar 

  • Marcus, M. B., & Swerling, P. (1962). Sequential detection in radar with multiple resolution elements. I.R.E. Transactions on Information Theory, 8(3), 237–245.

    Article  Google Scholar 

  • Øksendal, B., & Sulem, A. (2007). Universitext. Applied stochastic control of jump diffusions. Berlin: Springer.

    Book  Google Scholar 

  • Peskir, G., & Gapeev, P. (2004). The Wiener sequential testing problem with finite horizon. Stochastics and Stochastics Reports, 76, 59–75.

    Article  Google Scholar 

  • Peskir, G., & Shiryaev, A. (2000). Sequential testing problems for Poisson processes. Annals of Statistics, 28, 837–859.

    Article  Google Scholar 

  • Peskir, G., & Shiryaev, A. (2006). Optimal stopping and free boundary problems. Basel: Birkhäuser.

    Google Scholar 

  • Salminen, P. (1985). Optimal stopping of one-dimensional diffusions. Mathematische Nachrichten, 124(1), 85–101.

    Article  Google Scholar 

  • Sezer, S. O. (2010). On the Wiener disorder problem. The Annals of Applied Probability, 20(4), 1537–1566.

    Article  Google Scholar 

  • Shiryaev, A., & Gapeev, P. (2011). On the sequential testing problem for some diffusion processes. Stochastics, 83(4–6), 519–535.

    Google Scholar 

  • Shiryaev, A., & Zhitlukhin, M. (2011). A Bayesian sequential testing problem of three hypotheses for Brownian motion. Statistics and Risk Modeling, 28(3), 227–249.

    Google Scholar 

  • Shiryaev, A. N. (1978). Optimal stopping rules. New York: Springer.

    Google Scholar 

  • Veeravalli, V., & Baum, C. (1996). Hybrid acquisition of direct sequence CDMA signals. International Journal of Wireless Information Networks, 3(1), 55–65.

    Article  Google Scholar 

  • Wald, A., & Wolfowitz, J. (1950). Bayes solutions of sequential decision problems. Annals of Mathematical Statistics, 21, 82–99.

    Article  Google Scholar 

  • Zacks, S. (1971). The theory of statistical inference. New York: Wiley.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and the anonymous referee for the very helpful comments, which improved the presentation in the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Semih O. Sezer.

Appendix

Appendix

1.1 A.1 The proof of Lemma 4.2

Let \(G_{\ell,r}(\phi,\xi) = \frac{\psi_{\ell}(\phi \land \xi) \eta_{r}(\phi \lor \xi) }{p^{2}(\xi) W_{\ell,r}(\xi)}\), 0<ϕ,ξ<∞ be the Green’s function of the boundary value problem (A 0 f)(ϕ)−λ 0 f(ϕ)=−k(ϕ) for every <ϕ<r and f()=f(r)=0. Then \(f(\phi)= \int^{r}_{\ell} G_{\ell,r}(\phi,\xi) k(\xi) \,\mathrm {d}\xi = \eta_{r}(\phi) \int^{\phi}_{\ell} \frac{2\psi_{\ell}(\xi)}{p^{2}(\xi) W_{\ell,r}(\xi)} k(\xi) \,\mathrm {d}\xi + \psi_{\ell}(\phi) \int^{r}_{\phi} \frac{2\eta_{r} (\xi)}{p^{2}(\xi) W_{\ell,r}(\xi)} k(\xi) \,\mathrm {d}\xi\), which is also the right-hand side of (4.5), is twice continuously differentiable and solves uniquely the boundary value problem above. Then \(e^{-\lambda_{0} (\tau_{\ell,r} \land t)} f(Y^{\varPhi_{0}}_{\tau_{\ell,r} \land t}) = f(Y^{\varPhi_{0}}_{0}) + \int^{\tau_{\ell,r} \land t}_{0} e^{-\lambda_{0} s} (A_{0}f -\lambda_{0}f) ( Y^{\varPhi_{0}}_{s}) \,\mathrm {d}{s} + \int^{\tau_{\ell,r}\land t}_{0} e^{-\lambda_{0} s} f'(Y^{\varPhi_{0}}_{s}) p(Y^{\varPhi_{0}}_{s}) (\mathrm {d}{X}_{s} - \mu_{0} \,\mathrm {d}{s} )\) for every t≥0 by Itô rule. Because f′(⋅) and p(⋅) are continuous on [,r]⊂(0,∞), they are bounded, and the stochastic integral on the right-hand side is a square-integrable \((\mathbb {P}_{0},\mathbb {F}^{X})\)-martingale. Taking firstly the expectations of both sides and then their limits as t→∞, and finally rearranging the terms lead to \(f(\phi) = \mathbb {E}^{\phi}_{0} [\int^{\tau_{\ell,r}}_{0} e^{-\lambda_{0} s }k(Y^{\varPhi_{0}}_{s}) \,\mathrm {d}{s} ] + \mathbb {E}^{\varPhi_{0}}_{0} [e^{-\lambda_{0} \tau_{\ell, r}} f(Y^{\varPhi}_{\tau_{\ell,r}})] = \mathbb {E}^{\phi}_{0} [\int^{\tau_{\ell,r}}_{0} e^{-\lambda_{0} s} k(Y^{\varPhi_{0}}_{s}) \,\mathrm {d}{s} ]\), because f()=f(r)=0. For the proof of (4.6), note lim ↓0,r↑∞ τ ,r =∞ \(\mathbb {P}^{\phi}_{0}\)-a.s. for all ϕ∈(0,∞) since 0 and ∞ are natural boundaries of \(Y^{\varPhi_{0}}\). Moreover, \(\int^{\tau_{\ell,r}}_{0} e^{-\lambda_{0} t} |k(Y^{\varPhi_{0}}_{t})|\,\mathrm {d}{t} \leq c \int^{\tau_{\ell,r}}_{0} e^{-\lambda_{0} t} (1+ Y^{\varPhi_{0}}_{t})\,\mathrm {d}{t} \leq c \int^{\infty}_{0} e^{-\lambda_{0} t} (1+ Y^{\varPhi_{0}}_{t})\,\mathrm {d}{t}\), and since \(\mathbb {E}^{\phi}_{0}[Y^{\varPhi_{0}}_{t}] = \phi e^{-(\lambda_{1}-\lambda_{0})t}\) as in (4.4), we have \(\mathbb {E}^{\phi}_{0} [\int^{\infty}_{0} e^{-\lambda_{0} t} (1+ Y^{\varPhi_{0}}_{t})\,\mathrm {d}{t}] = \frac{1}{\lambda_{0}} + \int^{\infty}_{0} e^{-\lambda_{0} t} \mathbb {E}^{\phi}_{0} [ Y^{\varPhi_{0}}_{t} ]\,\mathrm {d}{t} = \frac{1}{\lambda_{0}} + \frac{\phi}{\lambda_{1}} <\infty\). Therefore, \(\lim_{\ell \downarrow 0, r\uparrow \infty} \int^{\tau_{\ell,r}}_{0} e^{-\lambda_{0} t} k(Y^{\varPhi_{0}}_{t})\,\mathrm {d}{t} = \int^{\infty}_{0} e^{-\lambda_{0} t} k(Y^{\varPhi_{0}}_{t})\,\mathrm {d}{t}\)-a.s. and the dominated convergence theorem implies \(\mathbb {E}^{\phi}_{0} [\int^{\infty}_{0} e^{-\lambda_{0} t}\* k(Y^{\varPhi_{0}}_{t})\,\mathrm {d}{t} ]= \lim_{\ell \downarrow 0, r \uparrow \infty} \mathbb {E}^{\phi}_{0} [\int^{\tau_{\ell,r}}_{0} e^{-\lambda_{0} t} k(Y^{\varPhi_{0}}_{t})\,\mathrm {d}{t}]\) equals

(A.1)

We have lim ↓0ψ (ξ)=ψ(ξ) and lim r↑∞η r (ξ)=η(ξ) for every ξ>0. Because α 0<0, \(\int^{\phi}_{\ell} \frac{2 \psi_{\ell}(\xi)}{p^{2}(\xi) W(\xi)} |k(\xi)| \,\mathrm {d}\xi \leq c \int^{\phi}_{0} \frac{2 \psi(\xi)}{p^{2}(\xi) W(\xi)} (1+\xi) \,\mathrm {d}\xi = c\int^{\phi}_{0} \xi^{-1-\alpha_{0}}(1+\xi)\,\mathrm {d}\xi <\nobreak\infty\), and the dominated convergence theorem implies that \(\lim_{\ell \downarrow 0} \int^{\phi}_{\ell} \frac{2 \psi_{\ell}(\xi)}{p^{2}(\xi) W(\xi)} k(\xi) \,\mathrm {d}\xi = \int^{\phi}_{0} \frac{2 \psi(\xi)}{p^{2}(\xi) W(\xi)} k(\xi) \,\mathrm {d}\xi\). Similarly, because α 1>0, we have \(\int^{r}_{\phi} \frac{2 \eta_{r}(\xi)}{p^{2}(\xi) W(\xi)} |k(\xi)| \,\mathrm {d}\xi \leq c \int^{\infty}_{\phi}\frac{2 \eta(\xi)}{p^{2}(\xi) W(\xi)} (1+\xi) \,\mathrm {d}\xi = c\int^{\infty}_{\alpha} \xi^{-1-\alpha_{1}}(1+\xi) \,\mathrm {d}\xi < \infty\), and by the dominated convergence, \(\lim_{r\uparrow \infty} \int^{r}_{\phi} \frac{2\eta_{r}(\xi)}{p^{2}(\xi) W(\xi)} k(\xi) \,\mathrm {d}\xi = \int^{\infty}_{\phi} \frac{2 \eta(\xi)}{p^{2}(\xi) W(\xi)} k(\xi) \,\mathrm {d}\xi\). Taking the limits on the right-hand side of (A.1) and using (4.12) complete the proof of (4.6), which can be directly shown to satisfy (A 0 fλ 0 f)(ϕ)+k(ϕ)=0 for every ϕ>0.

Finally, suppose that the limit k(0+)=lim ϕ↓0 k(ϕ) exists. For every 0<ϕ≤1, we have \(Y^{\phi}_{t} \leq Y^{1}_{t}\) for every t≥0 \(\mathbb {P}^{1}_{0}\)-a.s. Note that \(\mathbb {E}^{\phi}_{0} [\int^{\infty}_{0} e^{-\lambda_{0} t} k(Y^{\varPhi_{0}}_{t})\,\mathrm {d}{t} ] = \mathbb {E}^{1}_{0} [\int^{\infty}_{0} e^{-\lambda_{0} t} k(Y^{\phi}_{t})\,\mathrm {d}{t} ]\) for every ϕ>0, where \(|k(Y^{\phi}_{t})|\leq c(1+Y^{\phi}_{t})\leq c(1+Y^{1}_{t})\), and \(\mathbb {E}^{1}_{0} [\int^{\infty}_{0} e^{-\lambda_{0} t} (1+Y^{1}_{t})\,\mathrm {d}{t}] = \int^{\infty}_{0} e^{-\lambda_{0} t} (1+ \mathbb {E}^{1}_{0} Y^{1}_{t})\,\mathrm {d}{t} = \int^{\infty}_{0} e^{-\lambda_{0} t} (1+ e^{-(\lambda_{1}-\lambda_{0}) t}) \,\mathrm {d}{t} = \int^{\infty}_{0} e^{-\lambda_{0} t} \,\mathrm {d}{t} + \int^{\infty}_{0} e^{-\lambda_{1} t}\,\mathrm {d}{t}= \frac{1}{\lambda_{0}} + \frac{1}{\lambda_{1}}<\infty\). Because \(\lim_{\phi \downarrow 0} Y^{\phi}_{t} = 0\) and \(\lim_{\phi \downarrow 0} k(Y^{\phi}_{t}) = k(0+)\) for every t≥0 ℙ1-a.s., the dominated convergence implies that \(\lim_{\phi \downarrow 0} \mathbb {E}^{\phi}_{0} [\int^{\infty}_{0} e^{-\lambda_{0} t} k(Y^{\varPhi_{0}}_{t}) \,\mathrm {d}{t}] = \lim_{\phi \downarrow 0} \mathbb {E}^{1}_{0} [\int^{\infty}_{0} e^{-\lambda_{0} t}\* k(Y^{\phi}_{t}) \,\mathrm {d}{t}] = \mathbb {E}^{1}_{0} [\int^{\infty}_{0} e^{-\lambda_{0} t} (\lim_{\phi \downarrow 0} k(Y^{\phi}_{t})) \,\mathrm {d}{t}] =k(0+) \int^{\infty}_{0} e^{-\lambda_{0} t}\,\mathrm {d}{t} =\frac{k(0+)}{\lambda_{0}}\), which completes the proof.

1.2 A.2 The proof of Lemma 4.3

Recall w:ℝ+↦ℝ is increasing and −bw(ϕ)≤h(ϕ), ϕ∈ℝ+. Then w(0+)<0, since otherwise w(⋅)≡0. Also \((K w)(\phi) = \int_{E} w(\frac{\lambda_{1}}{\lambda_{0}} \frac{\mathrm {d}\nu_{1}}{\mathrm {d}\nu_{0}}(z)\phi) \nu_{0}(\mathrm {d}{z})\) is increasing and −b≤(Kw)(ϕ)≤0, ϕ∈ℝ+. Then \(\lim_{\phi \downarrow 0} \int^{\phi}_{0} \xi^{-1-\alpha_{0}}|(K w)(\xi)| \,\mathrm {d}\xi \leq b\, \lim_{\phi \downarrow 0} \int^{\phi}_{0} \xi^{-1-\alpha_{0}} \,\mathrm {d}\xi = b\, \lim_{\phi \downarrow 0} \frac{\phi^{-\alpha_{0}}}{(-\alpha_{0})}\), since α 0<0, and (i) follows.

Next notice that lim ϕ↓0(Kw)(ϕ)=(Kw)(0+)=w(0+) by the bounded convergence theorem. For every fixed ε>0, there exists some δ>0 such that ϕ∈(0,δ) implies that w(0+)≤(Kw)(ϕ)≤w(0+)(1−ε). Then for every ϕ∈(0,δ) \(w(0+) \int^{\phi}_{0} \xi^{-1-\alpha_{0}}\,\mathrm {d}\xi \leq \int^{\phi}_{0} \xi^{-1-\alpha_{0}} (K w)(\xi)\,\mathrm {d}\xi \leq w(0+)(1-\varepsilon)\int^{\phi}_{0} \xi^{-1-\alpha_{0}}\,\mathrm {d}\xi\) or \(\frac{w(0+)}{(-\alpha_{0})} \leq \phi^{\alpha_{0}} \int^{\phi}_{0} \xi^{-1-\alpha_{0}} (K w)(\xi)\,\mathrm {d}\xi \allowbreak \leq \frac{w(0+)}{(-\alpha_{0})}(1-\varepsilon)\), which proves (ii) after taking limits as ϕ↓0, since ε>0 was arbitrary.

Because w(0+)≡(Kw)(0+)<0, there exists some δ such that ϕ∈(0,δ) implies that (Kw)(ϕ)<(1/2)(Kw)(0+). Then \(\int^{\infty}_{\phi}\xi^{-1-\alpha_{1}}(K w)(\xi)\,\mathrm {d}\xi \leq \int^{\delta}_{\phi} \xi^{-1-\alpha_{1}} (K w)(\xi)\,\mathrm {d}\xi \leq \frac{w(0+)}{2} \int^{\delta}_{\phi} \xi^{-1-\alpha_{1}}\,\mathrm {d}\xi = \frac{w(0+)(\delta^{-\alpha_{1}}-\phi^{-\alpha_{1}})}{2(-\alpha_{1})}\) for every ϕ∈(0,δ), and because w(0+)<0 and α 1>1, we have \(\varlimsup_{\phi \downarrow 0} \int^{\infty}_{\phi} \xi^{-1-\alpha_{1}} (K w)(\xi)\,\mathrm {d}\xi \leq -\infty\), which completes the proof of (iii).

For every fixed ε>0, there exists some δ>0 such that ϕ∈(0,δ) implies that w(0+)≡(Kw)(0+)≤(Kw)(ϕ)≤w(0+)(1−ε). Therefore, for every ϕ∈(0,δ) we have \(\frac{w(0+)}{\alpha_{1}}(\phi^{-\alpha_{1}} - \delta^{-\alpha_{1}}) \leq \int^{\delta}_{\phi} \xi^{-1-\alpha_{1}} (K w)(\xi)\,\mathrm {d}\xi \leq \frac{w(0+)}{\alpha_{1}}(1-\varepsilon)(\phi^{-\alpha_{1}}-\delta^{-\alpha_{1}})\). Adding \(\int^{\infty}_{\delta} \xi^{-1-\alpha_{1}} (K w)(\xi)\,\mathrm {d}\xi\), which is finite, and multiplying by \(\phi^{\alpha_{1}}\) all three sides give

Since α 1>0, \(\frac{w(0+)}{\alpha_{1}} \leq \varliminf_{\phi \downarrow 0} \phi^{\alpha_{1}} \int^{\infty}_{\phi} \xi^{-1-\alpha_{1}} (K w)(\xi) \,\mathrm {d}\xi \leq \varlimsup_{\phi \downarrow 0} \phi^{\alpha_{1}} \int^{\infty}_{\phi} \xi^{-1-\alpha_{1}} (K w)(\xi) \*\,\mathrm {d}\xi \leq \frac{w(0+)}{\alpha_{1}}(1-\varepsilon)\), which completes the proof of (iv) because ε>0 is arbitrary.

For the proof of (v), firstly note that the monotonicity of w(⋅) and the bounded convergence theorem implies that \((K w)(\infty) = \lim_{\phi \uparrow \infty} (K w)(\phi) = \lim_{\phi \uparrow \infty} \int w(\frac{\lambda_{1}}{\lambda_{0}}\frac{\mathrm {d}\nu_{1}}{\mathrm {d}\nu_{0}}(z)\phi) \nu_{0}(\mathrm {d}{z})\) exists and equals w(∞). Then for every ε>0 there exists some M>0 such that ϕ>M implies that w(∞)−ε≤(Kw)(ϕ)≤w(∞). Therefore, for every ϕ>M

Adding \(\int^{M}_{0} \xi^{-1-\alpha_{0}} (K w)(\xi) \,\mathrm {d}\xi\), which is finite, and multiplying by \(\phi^{\alpha_{0}}\) all three sides give

Letting ϕ↑∞ and recalling that α 0<0 gives \(\frac{w(\infty)-\varepsilon}{(-\alpha_{0})} \leq \varliminf_{\phi \uparrow \infty} \phi^{\alpha_{0}} \int^{\phi}_{M} \xi^{-1-\alpha_{0}} (K w)(\xi) \,\mathrm {d}\xi \leq \varlimsup_{\phi \uparrow\infty} \phi^{\alpha_{0}} \int^{\phi}_{M} \xi^{-1-\alpha_{0}} (K w)(\xi) \,\mathrm {d}\xi \leq \frac{w(\infty)}{(-\alpha_{0})}\). Because ε>0 is arbitrary, this proves (v). And (vi) follows from α 1>0 and that \(\lim_{\phi \uparrow \infty} \int^{\infty}_{\phi} \xi^{-1-\alpha_{1}} |(K w)(\xi)| \,\mathrm {d}\xi \leq b\cdot \lim_{\phi \uparrow \infty} \int^{\infty}_{\phi} \xi^{-1-\alpha_{1}} \,\mathrm {d}\xi\allowbreak = b\cdot \lim_{\phi\uparrow \infty} \frac{\phi^{-\alpha_{1}}}{\alpha_{1}} = 0\). To prove (vii), let ε and M be as in the proof of (v). Then for ϕ>M

Multiplying all sides by \(\phi^{\alpha_{1}}\) gives \(\frac{w(\infty)-\varepsilon}{\alpha_{1}} \leq \phi^{\alpha_{1}} \int^{\infty}_{\phi} \xi^{-1-\alpha_{1}} (K w)(\xi) \,\mathrm {d}\xi \leq \frac{w(\infty)}{\alpha_{1}}\) for all ϕ>M, which proves (vii) and Lemma 4.3 after taking limit as ϕ↑∞ because ε>0 is arbitrary.

1.3 A.3 The proof of Lemma 4.5

Because \(Y^{\varPhi_{0}}\) is a regular diffusion on ℝ+, \(\mathbb {P}^{r}_{0}\{\tau_{\ell}<\infty \}>0\) and there exists some 0<t<∞ such that \(\mathbb {P}^{r}_{0}\{\tau_{\ell}<t\}>0\). On the other hand, the sample-path decomposition in (2.16) of jump-diffusion process Φ into diffusion part \(Y^{\varPhi_{0}}\) and jump part, which are ℙ0-independent, implies that \(\delta := \mathbb {P}^{r}_{0}\{\widetilde {\tau }_{\ell,\infty} \leq t\} \geq \mathbb {P}^{r}_{0}\{\widetilde {\tau }_{\ell,\infty} \leq t, T_{1}>t\} = \mathbb {P}^{r}_{0}\{\tau_{\ell} \leq t, T_{1}>t\} =\allowbreak \mathbb {P}^{r}_{0}\{\tau_{\ell} \leq \nobreak t\} \mathbb {P}^{r}_{0}\{T_{1}>t\} = \mathbb {P}^{r}_{0}\{\tau_{\ell} \leq t\}e^{-\lambda_{0} t}>0\). Next for every ϕ∈(,r),

Hence, \(\sup_{\phi \in [\ell,r]} \mathbb {P}^{\phi}_{0}\{\widetilde {\tau }_{\ell,r} > t\} \leq 1-\delta<1\), and \(\mathbb {E}^{\phi}_{0} \widetilde {\tau }^{k}_{\ell,r} = \sum^{\infty}_{m=0} \mathbb {E}^{\phi}_{0} [\widetilde {\tau }^{k}_{\ell,r}1_{\{ m t< \widetilde {\tau }_{\ell,r}\leq (m+1)t\}} ] \leq t^{k} \sum^{\infty}_{m=0} (m+1)^{k} \mathbb {P}^{\phi}_{0} \{\widetilde {\tau }_{\ell,r} > m t\}\) for all k>0. Since Φ is a strong \((\mathbb {P}_{0},\mathbb {F})\)-Markov process,

$$ \begin{aligned} \mathbb {P}^{\phi}_0\{\widetilde {\tau }_{\ell,r} > m t\} &= \mathbb {P}^{\phi}_0\bigl\{\widetilde {\tau }_{\ell,r} > (m-1) t, \widetilde {\tau }_{\ell,r} > m t\bigr\} = \mathbb {E}^{\phi}_0 \bigl[ 1_{\{\widetilde {\tau }_{\ell,r} > (m-1) t\}} \mathbb {P}^{\varPhi_{(m-1)t}}_0 \{\widetilde {\tau }_{\ell,r} > t\} \bigr]\\ &\leq (1-\delta)\, \mathbb {P}^{\phi}_0 \bigl\{\widetilde {\tau }_{\ell,r} > (m-1) t\bigr\} \leq \cdots \leq (1-\delta)^m \quad \mbox{for every }m \geq 1, \end{aligned} $$

and \(\mathbb {E}^{\phi}_{0} \widetilde {\tau }^{k}_{\ell,r} \leq t^{k} \sum^{\infty}_{m=0} (m+1)^{k} (1-\delta)^{m} <\infty\) for every ϕ∈[,r], which proves Lemma 4.5.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dayanik, S., Sezer, S.O. Multisource Bayesian sequential binary hypothesis testing problem. Ann Oper Res 201, 99–130 (2012). https://doi.org/10.1007/s10479-012-1217-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-012-1217-z

Keywords

Navigation