Skip to main content

Advertisement

Log in

Introducing cost-plus-loss analysis into a hierarchical forestry planning environment

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Cost-plus-loss analysis of data for forestry planning has often been carried out for highly simplified planning situations. In this study, we suggest an advance in the cost-plus-loss methodology that aims to capture the hierarchical structure and iterative nature of planning by the large forest owner. The simulation system that is developed to simulate the planning process of the forest owner includes the tactical and operational levels of a continuous planning process. The system is characterized by annual re-planning of the tactical plan with a planning horizon of ten year and with the option to reassess data for selected stands before operational planning. Operational planning is done with a planning horizon of two years and the first year of the plan is considered to have been executed before moving the planning process one year forward. The annual cycle is repeated 10 times, simulating decisions made over a ten-year time horizon. The optimizing planning models of the system consider wood flow requirements, available harvest resources, seasonal variation of ground conditions and spatiality. The data used are evaluated according to standard procedures in cost-plus-loss analysis. Results from a test case indicate high decision losses when planning at both levels is based on the type of data prevalent in the stand databases of Swedish companies. The losses can be reduced substantially if higher-quality data are introduced before operational planning. In summary, the results indicate that the method makes it possible to analyze where in the planning process one needs better data and their value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agestam, E. (1985). En produktionsmodell för blandbestånd av tall, gran och björk i Sverige [A production model for mixed species stands of pine, spruce and birch in Sweden] (Rapport 15). Sveriges lantbruksuniversitet, institutionen för skogsproduktion [In Swedish with English abstract].

  • Andersson, D. (2005). Approaches to integrated strategic/tactical forest planning (Report 16). Swedish University of Agricultural Sciences, Department of Forest Resource Management and Geomatics.

  • Andersson, D., & Eriksson, L. O. (2007). Effects of temporal aggregation in integrated strategic/tactical and strategic forest planning. Forest Policy and Economics, 9(8), 965–981.

    Article  Google Scholar 

  • Anon. (1986). Områdeskalkyler—Skog: mellersta Sverige 1986/1987 [District accountings—forest: mid Sweden 1986/87] (Konsulentavdelningens rapporter, Allmänt nr 112) Sveriges Lantbruksuniversitet.

  • Anon. (1994). Swedish forestry Act. Swedish national board of forestry, Jönköping, Sweden.

  • Bisschop, J., & Roelofs, M. (1999). AIMMS the user’s guide. Paragon Decision Technology B.V., Haarlem, The Netherlands.

  • Borders, B. E., Harrison, W. M., Clutter, M. L., Shiver, B. D., & Souter, R. A. (2008). The value of timber inventory information for management planning. Canadian Journal of Forest Research, 38(8), 2287–2294.

    Article  Google Scholar 

  • Church, R. L. (2007). Tactical-level forest management models. In A. Weintraub, C. Romero, T. Bjørndal, & R. Epstein (Eds.) Handbook of operations research in natural resources. New York: Springer.

    Google Scholar 

  • Davis, R. G., Johnson, K. N., Bettinger, P. S., & Howard, T. E. (2000). Forest management. New York: McGraw Hill.

    Google Scholar 

  • Davis, R. G., & Martell, D. L. (1993). A decision support system that links short-term silvicultural operating plans with long-term forest level strategic plans. Canadian Journal of Forest Research, 23, 1078–1095.

    Article  Google Scholar 

  • Duvemo, K., Barth, A., & Wallerman, J. (2007). Evaluating sample plot imputation techniques as input in forest management planning. Canadian Journal of Forest Research, 37(11), 2069–2079.

    Article  Google Scholar 

  • Duvemo, K., & Lämås, T. (2006). The influence of forest data quality on planning processes in forestry. Scandinavian Journal of Forest Research, 21(4), 327–339.

    Article  Google Scholar 

  • Duvemo, K. (2009). The influence of data uncertainty on planning and decision processes in forest management. Diss. Umeå: Swedish University of Agricultural Sciences, Acta Universitatis Agriculturae Sueciae; 2009:6.

  • Eid, T. (1993). Random errors and strategic planning in forestry. Norwegian Forest Research Institute. Medd. Skogforsk 46(7).

  • Eid, T. (2000). Use of uncertain inventory data in forestry scenario models and consequential incorrect harvest decisions. Silva Fennica, 34(2), 89–100.

    Google Scholar 

  • Eid, T., Gobakken, T., & Naesset, E. (2004). Comparing stand inventories for large areas based on photo-interpretation and laser scanning by means of cost-plus-loss analyses. Scandinavian Journal of Forest Research, 19(6), 512–523.

    Article  Google Scholar 

  • Epstein, R., Karlsson, J., Rönnqvist, M., & Weintraub, A. (2007). Harvest operational models in forestry. In A. Weintraub, C. Romero, T. Bjørndal, & R. Epstein (Eds.) Handbook of operations research in natural resources. New York: Springer.

    Google Scholar 

  • Eriksson, L. O. (1983). Timber class formation by cluster analysis (Report No. 157). Department of Forest Technology, Swedish University of Agricultural Sciences.

  • Eriksson, M. (2004). Strategisk och taktisk planering samt länken där emellan—analys av planeringsprocessens genomförande vid SCA Skog [Strategic and tactical planning and the link between—analysis of implementation of the planning process at SCA Forest] (Report 207). Department of Forest Resource Management, Swedish University of Agricultural Sciences [In Swedish with English abstract].

  • Forsell, N. (2009). Planning under risk and uncertainty. Diss. Umeå: Swedish University of Agricultural Sciences, Acta Universitatis Agriculturae Sueciae, 1652-6880; 2009:39.

  • Gilabert, H., & McDill, M. E. (2010). Optimizing inventory and yield data collection for forest management planning. Forest Science, 56(6), 578–591.

    Google Scholar 

  • Gunn, E. A. (2007). Models for strategic forest management. In A. Weintraub, C. Romero, T. Bjørndal, & R. Epstein (Eds.) Handbook of operations research in natural resources (pp. 317–341). New York: Springer.

    Google Scholar 

  • Gustafsson, K., Larsson, M., Källman, U., & Eriksson, L. E. (2000). Logistical determinants in timber harvesting schedule. Accounting for geographical aspects in medium term forest planning. In Proceedings of the first world symposium on logistics in forest sector. Logistics in the forest sector (pp. 205–220). Helsinki, Finland: University of Helsinki and IUFRO.

    Google Scholar 

  • Hamilton, D. A. (1978). Specifying precision in natural resource inventories. In Proceeding from the workshop: integrated inventories of renewable natural resources, USDA Forest Service, Tucson, Arizona (pp. 276–281).

    Google Scholar 

  • Hirshleifer, J., & Riley, J. G. (1979). The analytics of uncertainty and information—an expository survey. Journal of Economic Literature, XVII, 1375–1421.

    Google Scholar 

  • Hoen, H. F., & Eid, T. (1990). En modell for analyse av behandlingsstrategier for en skog ved bestandssimulering og lineær programmering [A model for analysis of treatment strategies for a forest applying standwise simulations and linear programming] (Report 9/90). Norwegian Forest Research Institute [In Norwegian].

  • Holmström, H., Kallur, H., & Ståhl, G. (2003). Cost-plus-loss analyses of forest inventory strategies based on kNN-assigned reference sample plot data. Silva Fennica, 37(3), 381–398.

    Google Scholar 

  • Holopainen, M., & Talvitie, M. (2006). Effect of data acquisition accuracy on timing of stand harvests and expected net present value. Silva Fennica, 40(3), 531–543.

    Google Scholar 

  • Islam, M. N., Kurttila, M., Mehtätalo, L., & Haara, A. (2009). Analyzing the effects of inventory errors on holding-level forest plans: the case of measurement error in the basal area of the dominated tree species. Silva Fennica, 43(1), 71–85.

    Article  Google Scholar 

  • Jacobsson, J. (1986). Optimization and data requirements—a forest management planning problem. Ph.D. thesis. Swedish University of Agricultural Sciences, Umeå.

  • Johnson, K. N., & Scheurman, H. L. (1977). Forest science monographs: Vol. 18. Techniques for prescribing optimal timber harvest and investment under different objectives. Discussion and synthesis.

    Google Scholar 

  • Jonsson, B., Jacobsson, J., & Kallur, H. (1993). The forest management planning package, theory and application. Studia Forestalia Suecica, 189.

  • Kangas, A. S. (2010). Value of forest information. European Journal of Forest Research, 129(5), 863–874.

    Article  Google Scholar 

  • Kätsch, C. (2006). Precision forestry and information. In P. A. Ackerman, D. W. Längin, & M. C. Antonides (Eds.) Precision forestry in plantations, semi-natural and natural forests (pp. 175–186). Stellenbosch, South Africa: Stellenbosch University.

    Google Scholar 

  • Larsson, M. (1994). The significance of data quality in compartmental forest registers in estimating volume growth and non-optimal losses—a study of final felling compartments in northern Sweden (Rapport 26). Swedish University of Agricultural Sciences, Department of Biometry and Forest Management [In Swedish with English abstract].

  • Lämås, T. (1996). Forest management planning for biodiversity and timber production. Ph.D. thesis. Swedish University of Agricultural Sciences, Department of Forest Resource Management and Geomatics, Umeå. Report 3.

  • McCall, J. J. (1982). The economics of information and uncertainty. Chicago: University of Chicago Press.

    Book  Google Scholar 

  • Nelson, J., & Brodie, D. J. (1990). Comparison of random search algorithm and mixed integer programming for solving area-based forest plans. Canadian Journal of Forest Research, 20, 934–942.

    Article  Google Scholar 

  • Ollas, R. (1980). Nya utbytesfunktioner för träd och bestånd [New yield functions for trees and stands]. Forskningsstiftelsen Skogsarbeten 5 [In Swedish].

  • Richards, E., & Gunn, E. (2000). A model and tabu search method to optimize stand harvest and road construction schedules. Forest Science, 46(2), 188–203.

    Google Scholar 

  • Savage, D. W., Martell, D. L., & Wotton, B. M. (2010). Evaluation of two risk mitigation strategies for dealing with fire-related uncertainty in timber supply modelling. Canadian Journal of Forest Research, 40(6), 1136–1154.

    Article  Google Scholar 

  • Savage, D. W., Martell, D. L., & Wotton, B. M. (2011). Forest management strategies for dealing with fire-related uncertainty when managing two forest seral stages. Canadian Journal of Forest Research, 41(2), 309–320.

    Article  Google Scholar 

  • Sessions, J., & Sessions, B. J. (1992). Post-new forestry tools for tactical planning. Western Wildlands, 17(4), 39–44.

    Google Scholar 

  • Sprängare, B. (1975). A method for analysing the sensitivity of the long-range planning which depends on errors in stand data (Rapporter och uppsatser 87). Royal College of Forestry [In Swedish with English abstract].

  • Ståhl, G. (1992). A study on the quality of compartmentwise forest data acquired by subjective inventory methods (Report 24). Swedish University of Agricultural Sciences, Department of Biometry and Forest Management [In Swedish with English summary].

  • Ståhl, G. (1994). Bootstrap-estimation of the cost-plus-loss minimizing number of plots in compartmentwise forest inventories. In G. Ståhl (Ed.) Optimizing the utility of forest inventory activities. Section of Forest mensuration and management. Umeå: Swedish University of Agricultural Sciences. Report 27.

    Google Scholar 

  • Söderholm, J. (2002). De svenska skogsbolagens system för skoglig planering [Planning systems of Swedish forest companies] (Report 98). Department of Forest Resource Management and Geomatics, Swedish University of Agricultural Sciences [In Swedish with English abstract].

  • Tucker, H. (1962). An introduction to probability and mathematical statistics. New York: Academic Press.

    Google Scholar 

  • Weintraub, A., & Cholaky, A. (1991). A hierarchical approach to forest planning. Forest Science, 37, 439–460.

    Google Scholar 

  • Wikström, P. (2008). Jamförelse av ekonomi och produktion mellan trakthyggesbruk och blädning i skiktad granskog—analyser på beståndsnivå baserade påsimulering [Comparison of economic return between rotation—and continuous cover forestry in multi story spruce forests—analyses on stand level based on simulation] (Report 2008:24). 48 pp. Swedish Forest Agency [In Swedish].

  • Yoshimoto, A. (1996). Tactical scheduling using zero-one integer programming. Journal of Forest Planning, 2, 13–24.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ljusk Ola Eriksson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duvemo, K., Lämås, T., Eriksson, L.O. et al. Introducing cost-plus-loss analysis into a hierarchical forestry planning environment. Ann Oper Res 219, 415–431 (2014). https://doi.org/10.1007/s10479-012-1139-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-012-1139-9

Keywords

Navigation