Skip to main content

Advertisement

Log in

Combined land-use and water allocation planning

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

A general framework for a combined land use and water management is described. An optimization problem is formulated that combines combinatorial and spatial characteristics. The aim of the planning is to maximize economic benefit, while minimizing water extraction and transportation cost under ecological constraints. A genetic algorithm is employed endowed with a new neighborhood operator. This operator acts on a local level, but it produces global results. Although the computational scheme does not include compactness as a separate objective, compact patterns are produced as emergent results. The algorithm is tested on a fictive area represented as a grid with 15×15 land blocks and, also, on a real-world case study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aerts, J. C. J. H., & Heuvelink, G. B. M. (2002). Using simulated annealing for resource allocation. International Journal of Geographical Information Science, 16(6), 571–587.

    Article  Google Scholar 

  • Aerts, J. C. J. H., et al. (2005). Evaluating spatial design techniques for solving land-use allocation problems. Journal of Environmental Planning and Management, 48(1), 121–142.

    Article  Google Scholar 

  • Brimberg, J., & Salhi, S. (2005). A continuous location-allocation problem with zone-dependent fixed cost. Annals of Operations Research, 136, 99–115.

    Article  Google Scholar 

  • Brookes, J. C. (1997). A parameterized region-growing programme for site allocation on raster suitability maps. International Journal of Geographical Information Science, 11(4), 375–396.

    Article  Google Scholar 

  • Datta, D., et al. (2007). Multi-objective evolutionary algorithm for land-use management problem. International Journal of Computational Intelligence Research, 3(4), 371–384.

    Google Scholar 

  • Deb, K. (2000). An efficient constraint handling method for genetic algorithms. Computer Methods in Applied Mechanics and Engineering, 186, 311–338.

    Article  Google Scholar 

  • García-Alonso, C., Pérez-Naranjo, L. M., & Fernández-Caballero, J. C. (2011). Multiobjective evolutionary algorithms to identify highly autocorrelated areas: the case of spatial distribution in financially compromised farms. Annals of Operations Research, doi:10.1007/s10479-011-0841-3.

    Google Scholar 

  • Gendreau, M., & Potvin, J. Y. (2005). Metaheuristics in combinatorial optimization. Annals of Operations Research, 140, 189–213.

    Article  Google Scholar 

  • Goldberg, D. E. (1989). Genetic algorithms for search, optimization, and machine learning. Reading: Addison-Wesley.

    Google Scholar 

  • Holland, J. H. (1998). Emergence. From chaos to order. London: Oxford University Press.

    Google Scholar 

  • Jankowski, P. (1995). Integrating geographical information systems and multiple criteria decision-making methods. International Journal of Geographical Information Science, 9(3), 251–273.

    Article  Google Scholar 

  • Li, X., & Yeh, A. G. (2005). Integration of genetic algorithms and GIS for optimal location search. International Journal of Geographical Information Science, 19(5), 581–601.

    Article  Google Scholar 

  • Ligmann-Zielinska, A., Church, R. L., & Jankowski, P. (2008). Spatial optimization as a generative technique for sustainable multiobjective land-use allocation. International Journal of Geographical Information Science, 22(6), 601–622.

    Article  Google Scholar 

  • Malczewski, J. (2004). GIS-based land-use suitability analysis: a critical overview. Progress in Planning, 62, 3–65.

    Article  Google Scholar 

  • Markou, M., & Papadavid, G. (2007). Norm input–output for the main crop and livestock enterprises of Cyprus. Agricultural economics report 46. Agricultural Research Institute, Ministry of Agriculture, Natural Resources and Environment.

  • Matthews, B. K., Sibbald, R. A., & Craw, S. (1999). Implementation of a spatial decision support system for rural land use planning: integrating geographic information system and environmental models with search and optimisation algorithms. Computers and Electronics in Agriculture, 23, 9–26.

    Article  Google Scholar 

  • Michalewich, Z. (1999). Genetic algorithms + data structures = evolution programs. Berlin: Springer.

    Google Scholar 

  • Myronidis, D., & Arabatzis, G. (2009). An evaluation of the Greek post fire erosion mitigation policy through spatial analysis. Polish Journal of Environmental Studies, 18(5), 865–872.

    Google Scholar 

  • Ortega, J. F., et al. (2004). MOPECO: an economic optimization model for irrigation water management. Irrigation Science, 23(2), 61–75.

    Article  Google Scholar 

  • Polubarinova-Kochina, P. (1962). Theory of ground water movement. Princeton: Princeton University Press.

    Google Scholar 

  • Radulescu, M., Radulescu, C. Z., & Zbaganu, G. (2011). A portfolio theory approach to crop planning under environmental constraints. Annals of Operations Research, doi:10.1007/s10479-011-0902-7.

    Google Scholar 

  • Riveira, I. S., Magan, M. B., Maseda, R. C., & Barros, D. M. (2008). Algorithm based on simulated annealing for land-use allocation. Computers & Geosciences, 34, 259–268.

    Article  Google Scholar 

  • Sidiropoulos, E., & Fotakis, D. (2009). Cell-based genetic algorithm and simulated annealing for spatial groundwater allocation. Transactions on Environment and Development, 4, 5.

    Google Scholar 

  • Sidiropoulos, E., & Tolikas, P. (2008). Genetic algorithms and cellular automata in aquifer management. Applied Mathematical Modelling, 32(4), 617–640.

    Article  Google Scholar 

  • Stewart, T. J., Janssen, R., & Van Herwijnen, M. (2004). A genetic algorithm approach to multiobjective land use planning. Computers & Operations Research, 31(14), 2293–2313.

    Article  Google Scholar 

  • Suiadee, W., & Tingsanchali, T. (2007). A combined simulation–genetic algorithm optimization model for optimal rule curves of a reservoir: a case study of the Nam Oon Irrigation Project, Thailand. Hydrological Processes, 21, 3211–3225.

    Article  Google Scholar 

  • Tindell, K. W., Burns, A., & Wellings, A. J. (1992). Allocating hard real-time tasks: an NP-hard problem made easy. Real-Time Systems, 4, 145–165.

    Article  Google Scholar 

  • Venema, H. D., & Calamai, P. H. (2003). Bioenergy systems planning using location–allocation and landscape ecology design principles. Annals of Operations Research, 123, 241–264.

    Article  Google Scholar 

  • Wu, J., Zheng, L., & Liu, D. (2007). Optimizing groundwater development strategies by genetic algorithm: a case study for balancing the needs for agricultural irrigation and environmental protection in northern China. Hydrogeology Journal, 15, 1265–1278.

    Article  Google Scholar 

  • Zhou, H., Peng, H., & Zhang, C. (2007). In LNCS: Vol. 4688. An interactive fuzzy multi-objective optimization approach for crop planning and water resources allocation (pp. 335–346).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitris Fotakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fotakis, D., Sidiropoulos, E. Combined land-use and water allocation planning. Ann Oper Res 219, 169–185 (2014). https://doi.org/10.1007/s10479-012-1080-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-012-1080-y

Keywords

Navigation