Skip to main content
Log in

On generating maximal nondominated Benders cuts

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In this paper, we explore certain algorithmic strategies for accelerating the convergence of Benders decomposition method via the generation of maximal nondominated cuts. Based on interpreting the seminal work of Magnanti and Wong (Operations Research, 29(3), 464–484, 1981) for generating nondominated cuts within a multiobjective framework, we propose an algorithmic strategy that utilizes a preemptively small perturbation of the right-hand-side of the Benders subproblem to generate maximal nondominated Benders cuts, as well as a complimentary strategy that generates an additional cut in each iteration via an alternative emphasis on decision variable weights. We also examine the computational effectiveness of solving a secondary subproblem using an objective cut as proposed by Magnanti and Wong versus identifying the Pareto-optimality region for cut generation by utilizing complementary slackness conditions. In addition, we exhibit how a standard feasibility cut can be extracted from the solution of subproblems that generate only optimality cuts through the use of artificial variables. With Magnanti and Wong’s baseline procedure approximated during implementation via the use of a core point estimation technique (Papadakos in Computers and Operations Research, 36(1), 176–195, 2009), these algorithmic strategies are tested on instances from the literature concerning the fixed charge network flow program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bazaraa, M. S., Jarvis, J. J., & Sherali, H. D. (2010). Linear programming and network flows (4th edn.). Hoboken: Wiley.

    Google Scholar 

  • Benders, J. F. (1962). Partitioning procedures for solving mixed-variables programming problems. Numerische Mathematik, 4(1), 238–252.

    Article  Google Scholar 

  • Codato, G., & Fischetti, M. (2006). Combinatorial Benders’ cuts for mixed-integer linear programming. Operations Research, 54(4), 756–766.

    Article  Google Scholar 

  • Costa, A. M. (2005). A survey on Benders decomposition applied to fixed-charge network design problems. Computers & Operations Research, 32(6), 1429–1450.

    Article  Google Scholar 

  • Côté, G., & Laughton, M. A. (1984). Large-scale mixed integer programming: Benders-type heuristics. European Journal of Operational Research, 16(3), 327–333.

    Article  Google Scholar 

  • Fischetti, M., & Lodi, A. (2003). Local branching. Mathematical Programming, 98(1–3), 23–47.

    Article  Google Scholar 

  • Fischetti, M., Salvagnin, D., & Zanette, A. (2010). A note of the selection of Benders’ cuts. Mathematical Programming, 124(1–2), 175–182.

    Article  Google Scholar 

  • Geoffrion, A. M. (1972). Generalized Benders decomposition. Journal of Optimization Theory and Applications, 10(4), 237–260.

    Article  Google Scholar 

  • Geoffrion, A. M., & Graves, G. W. (1974). Multicommodity distribution system design by Benders decomposition. Management Science, 20(5), 822–844.

    Article  Google Scholar 

  • Haouari, M., Mrad, M., & Sherali, H. D. (2007). Optimum synthesis of discrete capacitated networks with multi-terminal commodity flow requirements. Optimization Letters, 1(4), 341–354.

    Article  Google Scholar 

  • Magnanti, T. L., & Wong, R. T. (1981). Accelerating Benders decomposition: algorithmic enhancement and model selection criteria. Operations Research, 29(3), 464–484.

    Article  Google Scholar 

  • Magnanti, T. L., & Wong, R. T. (1990). Decomposition methods for facility location problems. In P. B. Mirchandani & R. L. Francis (Eds.), Discrete location theory (pp. 209–262). Hoboken: Wiley.

    Google Scholar 

  • McDaniel, D., & Devine, M. (1977). A modified Benders’ partitioning algorithm for mixed integer programming. Management Science, 24(3), 312–319.

    Article  Google Scholar 

  • Mercier, A., & Soumis, F. (2007). An integrated aircraft routing, crew scheduling, and flight retiming model. Computers & Operations Research, 34(8), 2251–2265.

    Article  Google Scholar 

  • Mercier, A., Cordeau, J., & Soumis, F. (2005). A computational study of benders decomposition for the integrated aircraft routing and crew scheduling problem. Computers & Operations Research, 32(6), 1451–1476.

    Article  Google Scholar 

  • Nemhauser, G. L., & Wolsey, L. A. (1999). Integer and combinatorial optimization. Hoboken: Wiley.

    Google Scholar 

  • Papadakos, N. (2008). Practical enhancements to the Magnanti-Wong method. Operations Research Letters, 36(4), 444–449.

    Article  Google Scholar 

  • Papadakos, N. (2009). Integrated airline scheduling. Computers & Operations Research, 36(1), 176–195.

    Article  Google Scholar 

  • Rei, W., Cordeau, J.-F., Gendreau, M., & Soriano, P. (2009). Accelerating Benders decomposition by local branching. INFORMS Journal on Computing, 21(2), 333–345.

    Article  Google Scholar 

  • Saharidis, G. K. D., & Ierapetritou, M. G. (2010). Improving Benders decomposition using maximum feasible subsystem (MFS) cut generation strategy. Computers & Chemical Engineering, 34(8), 1237–1245.

    Article  Google Scholar 

  • Saharidis, G. K. D., Minoux, M., & Ierapetritou, M. G. (2010). Accelerating Benders method using covering cut bundle generation. International Transactions in Operational Research, 17(2), 221–237.

    Article  Google Scholar 

  • Sandhu, R., & Klabjan, D. (2004). Integrated airline planning. In Proceedings of the 44th AGIFORS annual symposium, Singapore.

    Google Scholar 

  • Santoso, T., Ahmed, S., Goetschalckx, M., & Shapiro, A. (2005). A stochastic programming approach for supply chain network design under uncertainty. European Journal of Operational Research, 167(1), 96–115.

    Article  Google Scholar 

  • Sherali, H. D. (1982). Equivalent weights for lexicographic multi-objective programs: characterizations and computations. European Journal of Operational Research, 11(4), 367–379.

    Article  Google Scholar 

  • Sherali, H. D., Bae, K., & Haouari, M. (2010). A Benders decomposition approach for an integrated airline schedule design and fleet assignment problem with flight retiming, schedule balance, and demand recapture. Annals of Operations Research (to appear).

  • Sherali, H. D., & Soyster, A. L. (1983). Preemptive and nonpreemptive multi-objective programming: relationships and counterexamples. Journal of Optimization Theory and Applications, 39(2), 173–186.

    Article  Google Scholar 

  • Steuer, R. E. (1986). Multiple criteria optimization: theory, computation, and application. Hoboken: Wiley.

    Google Scholar 

  • Van Roy, T. J. (1983). Cross decomposition for mixed integer programming. Mathematical Programming, 25(1), 46–63.

    Article  Google Scholar 

  • Wentges, P. (1996). Accelerating Benders’ decomposition for the capacitated facility location problem. Mathematical Methods of Operations Research, 44(2), 267–290.

    Article  Google Scholar 

  • Zakeri, G., Philpott, A. B., & Ryan, D. M. (1998). Inexact cuts in Benders’ decomposition. SIAM Journal on Optimization, 10(3), 643–657.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian J. Lunday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sherali, H.D., Lunday, B.J. On generating maximal nondominated Benders cuts. Ann Oper Res 210, 57–72 (2013). https://doi.org/10.1007/s10479-011-0883-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-011-0883-6

Keywords

Navigation