Skip to main content
Log in

Approximation and contamination bounds for probabilistic programs

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Development of applicable robustness results for stochastic programs with probabilistic constraints is a demanding task. In this paper we follow the relatively simple ideas of output analysis based on the contamination technique and focus on construction of computable global bounds for the optimal value function. Dependence of the set of feasible solutions on the probability distribution rules out the straightforward construction of these concavity-based global bounds for the perturbed optimal value function whereas local results can still be obtained. Therefore we explore approximations and reformulations of stochastic programs with probabilistic constraints by stochastic programs with suitably chosen recourse or penalty-type objectives and fixed constraints. Contamination bounds constructed for these substitute problems may be then implemented within the output analysis for the original probabilistic program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Birge, J. R., & Louveaux, F. (1997). Springer series on operations research. Introduction to stochastic programming. New York: Springer.

    Google Scholar 

  • Bonnans, J. S., & Shapiro, A. (2000). Springer series on operations research. Perturbation analysis of optimization problems. New York: Springer.

    Google Scholar 

  • Bosch, P., Jofré, A., & Schultz, R. (2007). Two-stage stochastic programs with mixed probabilities. SIAM Journal on Optimization, 18, 778–788.

    Article  Google Scholar 

  • Branda, M. (2010). Reformulation of general chance constrained problems using the penalty functions. In SPEPS 2010-2.

  • Branda, M., & Dupačová, J. (2008). Approximation and contamination bounds for probabilistic programs. In SPEPS 2008-13 (available at www.stoprog.org).

  • Danskin, J. M. (1967). Econometrics and operations research: Vol. 5. Theory of Max-Min. Berlin: Springer.

    Google Scholar 

  • Dobiáš, P. (2003). Contamination for stochastic integer programs. Bulletin of the Czech Econometric Society, 18, 65–80.

    Google Scholar 

  • Dupačová, J. (1986). Stability in stochastic programming with recourse—contaminated distributions. Mathematical Programming Studies, 27, 133–144.

    Google Scholar 

  • Dupačová, J. (1987). Stochastic programming with incomplete information: a survey of results on postoptimization and sensitivity analysis. Optimization, 18, 507–532.

    Article  Google Scholar 

  • Dupačová, J. (1990). Stability and sensitivity analysis in stochastic programming. Annals of Operation Research, 27, 115–142.

    Article  Google Scholar 

  • Dupačová, J. (1996). Scenario based stochastic programs: Resistance with respect to sample. Annals of Operation Research, 64, 21–38.

    Article  Google Scholar 

  • Dupačová, J. (2008). Risk objectives in two-stage stochastic programming problems. Kybernetika, 44, 227–242.

    Google Scholar 

  • Dupačová, J., & Polívka, J. (2007). Stress testing for VaR and CVaR. Quantitative Finance, 7, 411–421.

    Article  Google Scholar 

  • Dupačová, J., Bertocchi, M., & Moriggia, V. (1998). Postoptimality for scenario based financial models with an application to bond portfolio management. In W. T. Ziemba & J. Mulvey (Eds.), World wide asset and liability modeling (pp. 263–285). Cambridge: Cambridge University Press.

    Google Scholar 

  • Dupačová, J., Gaivoronski, A. A., Kos, Z., & Szántai, T. (1991). Stochastic programming in water management: a case study and a comparison of solution techniques. European Journal of Operational Research, 52, 28–44.

    Article  Google Scholar 

  • Ermoliev, T., Ermolieva, Y. M., MacDonald, G. J., & Norkin, V. I. (2000). Stochastic optimization of insurance portfolios for managing expose to catastrophic risks. Annals of Operation Research, 99, 207–225.

    Article  Google Scholar 

  • Gol’štejn, E. G. (1972). Translations of mathematical monographs: Vol. 36. Theory of convex programming. Providence: Am. Math. Soc.

    Google Scholar 

  • Guddat, J., Guerra Vasquez, F., Tammer, K., & Wendler, K. (1985). Multiobjective and stochastic optimization based on parametric optimization. Berlin: Akademie-Verlag.

    Google Scholar 

  • Kall, P. (1987). On approximations and stability in stochastic programming. In J. Guddat et al. (Eds.), Parametric optimization and related topics (pp. 387–400). Berlin: Akademie-Verlag.

    Google Scholar 

  • Kall, P., & Mayer, J. (2005a). Springer international series. Stochastic linear programming: models, theory and computation. New York: Springer.

    Google Scholar 

  • Kall, P., & Mayer, J. (2005b). Building and solving stochastic linear programming models with SLP-IOR. In S. W. Wallace & W. T. Ziemba (Eds.), MPS-SIAM book series on optimization: Vol. 5. Applications of stochastic programming (pp. 79–93).

    Chapter  Google Scholar 

  • Kall, P., Ruszczyński, A., & Frauendorfer, K. (1988). Approximation techniques in stochastic programming. In Yu. Ermoliev & R. J.-B. Wets (Eds.), Numerical techniques for stochastic optimization (pp. 34–64). Berlin: Springer.

    Google Scholar 

  • Kibzun, A. I., & Kan, Y. S. (1996). Stochastic programming problems with probability and quantile functions. New York: Wiley.

    Google Scholar 

  • Klein Haneveld, W. K. (1986). LNEMS: Vol. 274. Duality in stochastic linear and dynamic programming. Berlin: Springer.

    Google Scholar 

  • Luedtke, J., & Ahmed, S. (2008). A sample approximation approach for optimization with probabilistic constraints. SIAM Journal on Optimization, 19, 674–633.

    Article  Google Scholar 

  • Pagnoncelli, B. K., Ahmed, S., & Shapiro, A. (2009). Sample average approximation method for chance constrained programming: theory and applications. Journal of Optimization Theory and Applications, 142, 399–416.

    Article  Google Scholar 

  • Prékopa, A. (1971). Logarithmic concave measures with application to stochastic programming. Acta Sientiarum Mathematic (Szeged), 32, 301–316.

    Google Scholar 

  • Prékopa, A. (1973). Contributions to the theory of stochastic programming. Mathematical Programming, 4, 202–221.

    Article  Google Scholar 

  • Prékopa, A. (2003). Probabilistic programming. In A. Ruszczynski & A. Shapiro (Eds.), Handbook on stochastic programming (pp. 267–351). Amsterdam: Elsevier. Chap. 5.

    Chapter  Google Scholar 

  • Römisch, W. (2003). Stability of stochastic programming problems. In A. Ruszczynski & A. Shapiro (Eds.), Handbook on stochastic programming (pp. 483–554). Amsterdam: Elsevier. Chap. 8.

    Chapter  Google Scholar 

  • Ruszczynski, A., & Shapiro, A. (Eds.) (2003). Handbook on stochastic programming. Amsterdam: Elsevier.

    Google Scholar 

  • Serfling, R. J. (1980). Approximation theorems of mathematical statistics. New York: Wiley.

    Book  Google Scholar 

  • Shapiro, A. (2003). Monte Carlo sampling methods. In A. Ruszczynski & A. Shapiro (Eds.), Handbook on stochastic programming (pp. 353–425). Amsterdam: Elsevier. Chap. 6.

    Chapter  Google Scholar 

  • Žampachová, E. (2010). Approximations in stochastic optimization and their applications. Ph.D. Thesis, Brno University of Technology.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jitka Dupačová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Branda, M., Dupačová, J. Approximation and contamination bounds for probabilistic programs. Ann Oper Res 193, 3–19 (2012). https://doi.org/10.1007/s10479-010-0811-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-010-0811-1

Keywords

Navigation