Skip to main content
Log in

Randomized methods based on new Monte Carlo schemes for control and optimization

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

We address randomized methods for control and optimization based on generating points uniformly distributed in a set. For control systems this sets are either stability domain in the space of feedback controllers, or quadratic stability domain, or robust stability domain, or level set for a performance specification. By generating random points in the prescribed set one can optimize some additional performance index. To implement such approach we exploit two modern Monte Carlo schemes for generating points which are approximately uniformly distributed in a given convex set. Both methods use boundary oracle to find an intersection of a ray and the set. The first method is Hit-and-Run, the second is sometimes called Shake-and-Bake. We estimate the rate of convergence for such methods and demonstrate the link with the center of gravity method. Numerical simulation results look very promising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barmish, B. (1985). Necessary and sufficient condition for quadratic stabilizability of an uncertain system. Journal of Optimization Theory and Applications, 46(4), 399–408.

    Article  Google Scholar 

  • Ben-Tal, A., & Nemirovski, A. (2001). Lectures on modern convex optimization: analysis, algorithms and engineering applications. SIAM: Philadelphia.

    Book  Google Scholar 

  • Bertsimas, D., & Vempala, S. (2004). Solving convex problems by random walks. Journal of the ACM, 51, 540–556.

    Article  Google Scholar 

  • Bhattacharyya, S. (1987). Robust stabilization against structured perturbations. New York: Springer.

    Book  Google Scholar 

  • Borovkov, K. A. (1991). On a new variant of the Monte Carlo method. Theory of Probability and its Applications, 36(2), 355–360.

    Article  Google Scholar 

  • Borovkov, K. A. (1994). On simulation of random vectors with given densities in regions and on their boundaries. Journal of Applied Probability, 31(1), 205–220.

    Article  Google Scholar 

  • Boyd, S., El Ghaoui, L., Feron, E., & Balakrishnan, V. (1994). Linear matrix inequalities in system and control theory. SIAM: Philadelphia.

    Google Scholar 

  • Campi, M. (2008). Randomized algorithms in systems and control—Why resorting to the fate is wise? (Manuscript).

  • Comets, F., Popov, S., Schutz, G. M., & Vachkovskaia, M. (2006). Billiards in a general domain with random reflections. arXiv:math/0612799v3 [math.PR].

  • Dabbene, F., Shcherbakov, P., & Polyak, B. T. (2008). A randomized cutting plane method with probabilistic geometric convergence. In Proc. of the 47th CDC (pp. 3044–3049). Mexico: Cancun.

    Google Scholar 

  • Diaconis, P. (2009). The Markov chain Monte Carlo revolution. American Mathematical Society. Bulletin, 46(2), 179–205.

    Article  Google Scholar 

  • El Ghaoui, Oustry, F., & AitRami, M. (1997). A cone complementary linearization algorithm for static output-feedback and related problems. IEEE Transactions on Automatic Control, AC-42, 1171–1176.

    Article  Google Scholar 

  • Fujisaki, Y., Oishi, Y., & Tempo, R. (2008). Mixed deterministic/randomized methods for fixed order controller design. IEEE Transactions on Automatic Control, AC-53, 2033–2047.

    Article  Google Scholar 

  • Gilks, W. R., Richardson, S., & Spiegelhalter, D. J. (1996). Markov chain Monte Carlo. London: Chapman and Hall.

    Google Scholar 

  • Gryazina, E., & Polyak, B. (2006). Stability regions in the parameter space: D-decomposition revisited. Automatica, 42, 13–26.

    Article  Google Scholar 

  • Kaufman, D. E., & Smith, R. L. (1998). Direction choice for accelerated convergence in Hit-and-Run sampling. Operations Research, 46(1), 84–95.

    Article  Google Scholar 

  • Levin, A. Y. (1965). On an algorithm for the minimization of convex functions over convex sets. Soviet Mathematics Doklady, 160(6), 286–290.

    Google Scholar 

  • Lofberg, J. (2004). YALMIP: A Toolbox for Modeling and Optimization in MATLAB. In Proceedings of the CACSD conference. http://control.ee.ethz.ch/~joloef/yalmip.php.

  • Lovasz, L. (1999). Hit-and-Run mixes fast. Mathematical Programming, 86, 443–461.

    Article  Google Scholar 

  • Mitzenmacher, M., & Upfal, E. (2005). Probability and computing: randomized algorithms and probabilistic analysis. New York: Cambridge University Press.

    Google Scholar 

  • Nemirovski, A., & Yudin, D. (1983). Informational complexity and efficient methods for solution of convex extremal problems. New York: Wiley.

    Google Scholar 

  • Nesterov, Y., & Nemirovsky, A. (1994). Interior point polynomial methods in convex programming. SIAM: Philadelphia.

    Google Scholar 

  • Newman, D. J. (1965). Location of the maximum on unimodal surfaces. Journal of the ACM, 12, 395–398.

    Article  Google Scholar 

  • Polyak, B. T., & Shcherbakov, P. (2006a). Randomized algorithm for solving semidefinite programs. In Stochastic optimization in informatics (pp. 38–70). St-Peterburg State University (in Russian).

  • Polyak, B. T., & Shcherbakov, P. (2006b). The D-decomposition technique for linear matrix inequalities. Automation and Remote Control, 67(11), 1847–1861.

    Article  Google Scholar 

  • Radon, J. (1916). Uber eine Erweiterung des Begriffs der konvexen Functionen, mit einer Anwendung auf die Theorei der konvexen Korper. Sitzungsberichte der Wiener Akademie, 125, 241–258.

    Google Scholar 

  • Rastrigin, L. A. (1968). Statistical search method. Moscow: Nauka (in Russian).

    Google Scholar 

  • Rubinstein, R. Y., & Kroese, D. P. (2004). The cross-entropy method: a unified approach to combinatorial optimization, Monte-Carlo simulation and machine learning. Berlin: Springer.

    Google Scholar 

  • Rubinstein, R. Y., & Kroese, D. P. (2008). Simulation and the Monte Carlo method. New York: Wiley.

    Google Scholar 

  • Singh, S., & Coelho, A. (1984). Nonlinear control of mismatched uncertain linear systems and application to control of aircraft. Journal of Dynamic Systems, Measurement and Control, 106, 203–210.

    Article  Google Scholar 

  • Smith, R. L. (1984). Efficient Monte Carlo procedures for generating points uniformly distributed over bounded regions. Operations Research, 32(6), 1296–1308.

    Article  Google Scholar 

  • Tempo, R., Calafiore, G., & Dabbene, F. (2004). Communications and control engineering series: Randomized algorithms for analysis and control of uncertain systems. London: Springer.

    Google Scholar 

  • Turchin, V. F. (1971). On computation of multi-dimensional integrals by the Monte-Carlo method. Theory of Probability and its Applications, 16(4), 720–724.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris T. Polyak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polyak, B.T., Gryazina, E.N. Randomized methods based on new Monte Carlo schemes for control and optimization. Ann Oper Res 189, 343–356 (2011). https://doi.org/10.1007/s10479-009-0585-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-009-0585-5

Keywords

Navigation