Skip to main content

Advertisement

Log in

Small world network models of the dynamics of HIV infection

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

It has long been recognised that the structure of social networks plays an important role in the dynamics of disease propagation. The spread of HIV results from a complex network of social interactions and other factors related to culture, sexual behaviour, demography, geography and disease characteristics, as well as the availability, accessibility and delivery of healthcare. The small world phenomenon has recently been used for representing social network interactions. It states that, given some random connections, the degrees of separation between any two individuals within a population can be very small. In this paper we present a discrete event simulation model which uses a variant of the small world network model to represent social interactions and the sexual transmission of HIV within a population. We use the model to demonstrate the importance of the choice of topology and initial distribution of infection, and capture the direct and non-linear relationship between the probability of a casual partnership (small world randomness parameter) and the spread of HIV. Finally, we illustrate the use of our model for the evaluation of interventions such as the promotion of safer sex and introduction of a vaccine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, R. M., & May, R. M. (1988). Epidemiological parameters of HIV transmission. Nature, 333, 514–519.

    Article  Google Scholar 

  • Anderson, R. M., & May, R. M. (1991). Infectious diseases of humans: Dynamics and control. New York: Oxford University Press.

    Google Scholar 

  • Anderson, C., Wasserman, S., & Crouch, B. (1999). A p * primer: logit models for social networks. Social Networks, 21(1), 37–66.

    Article  Google Scholar 

  • Barnes, J. A. (1954). Class and committees in a Norwegian island parish. Human Relations, 7, 39–58.

    Article  Google Scholar 

  • Bavelas, A. (1948). A mathematical model for small group structure. Human Organization, 7, 16–30.

    Google Scholar 

  • Boots, M., & Sasaki, A. (1999). ‘small worlds’ and the evolution of virulence: infection occurs locally and at a distance. Proceedings of the Royal Society of London, Series B, 266, 1933–1938.

    Article  Google Scholar 

  • Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R., Tomkins, A., & Wiener, J. (2000). Graph structure in the web. Computer Networks, 33, 309–320.

    Article  Google Scholar 

  • Davis, K. R., & Weller, S. C. (1999). The effectiveness of condoms in reducing heterosexual transmission of HIV. Family Planning Perspectives, 31, 272–279.

    Article  Google Scholar 

  • Diekmann, O., Heesterbeek, J. A. P., & Metz, J. A. J. (1995). In D. Mollison (Ed.), Epidemic models: their structure and relation to data : Vol. 5. The legacy of Kermack and McKendrick (pp. 95–115). Cambridge University Press: Publications of the Newton Institute.

    Google Scholar 

  • Dietz, K., & Hadeler, K. P. (1988). Epidemiological models for sexually transmitted diseases. Mathematical Biology, 26, 1–25.

    Google Scholar 

  • Einhorn, L., & Polgar, M. (1994). HIV risk behavior among lesbians and bisexual women. AIDS Prevention Education, 6(6), 514–523.

    Google Scholar 

  • Fauci, A. S., Pantaleo, G., Stanley, S., & Weissman, D. (1996). Immunopathogenic mechanisms of HIV infection. Annals of Internal Medicine, 124(7), 654–663.

    Google Scholar 

  • Freeman, L. C. (1996). Some antecedents of social network analysis. Connections, 19, 39–42.

    Google Scholar 

  • Ghani, A. C., & Garnett, G. P. (1998). Measuring sexual partner networks for transmission of sexually transmitted diseases. Journal of the Royal Statistical Society, 161(2), 227–238.

    Article  Google Scholar 

  • Ghani, A. C., & Garnett, G. P. (2000). Risks of acquiring and transmitting sexually transmitted diseases in sexual partner networks. Sexually Transmitted Diseases, 27(10), 579–587.

    Article  Google Scholar 

  • Gray, R. H., Li, X., Wawer, M. J., Gange, S. J., Serwadda, D., Sewankambo, N. K., Moore, R., Wabwire-Mangen, F., Lutalo, T., & Quinn, T. C. (2003). Rakai Project Group. Stochastic simulation of the impact of antiretroviral therapy and HIV vaccines on HIV transmission; Rakai, Uganda. AIDS, 17, 1941–1951.

    Article  Google Scholar 

  • Groten, E. (2004). Fundamental parameters and current (2004) best estimates of the parameters of common relevance to astronomy, geodesy, and geodynamics. Journal of Geodesy, 77(10–11), 724–797.

    Google Scholar 

  • Gupta, S., Anderson, R. M., & May, R. M. (1989). Networks of sexual contacts: implications for the pattern of spread of HIV. AIDS, 3, 807–817.

    Article  Google Scholar 

  • Killworth, P. D., & Bernard, H. R. (1978). The reverse small world experiment. Social Networks, 1, 159–192.

    Article  Google Scholar 

  • Knuth, D. (1997). In The Art of Computing programming : Vol. 2. Seminumerical algorithms (3rd ed.) (pp. 184–189). Reading: Addison-Wesley.

    Google Scholar 

  • Kretzschmar, M. (2000). Sexual network structure and sexually transmitted disease prevention—a modeling perspective. Sexually Transmitted Diseases, 27, 627–635.

    Article  Google Scholar 

  • Kuperman, M., & Abramson, G. (2001). Small world effect in an epidemiological model. Physical Review Letters, 86(13), 2909–2912.

    Article  Google Scholar 

  • Latora, V., & Marchiori, M. (2001). Efficient behavior of small-world networks. Physical Review Letters, 87(19), 1–4.

    Article  Google Scholar 

  • Liljeros, F., Edling, C. R., Amaral, L. A. N., Stanley, H. E., & Aberg, Y. (2001). The web of human sexual contacts. Nature, 411, 907–908.

    Article  Google Scholar 

  • Marsaglia, G. (1972). Choosing a point from the surface of a sphere. Annals of Mathematical Statistics, 43(2), 645–646.

    Article  Google Scholar 

  • Milgram, S. (1967). The small world problem. Psychology Today, 2, 60–67.

    Google Scholar 

  • Ministry of Health, Brazil. (2000). Survey of sexual behavior of the Brazilian population and perceptions of HIV/AIDS (Technical report). Centro Brasileiro de An’alise e Planejamento. Brazilian Minister of Health, Brasilia.

  • Ministry of Health, Brazil. (2003). Brazilian National Programme on DST/AIDS. Survey of the sexually active population (Technical report). Brazilian Minister of Health/IBOPE, Brasilia, January 2003.

  • Moore, C., & Newman, M. E. J. (2000). Epidemics and percolation in small-world network. Physical Review E, 61, 5678–5682.

    Article  Google Scholar 

  • Moreno, J. L. (1934). Who shall survive? Washington: Nervous and Mental Disease Publishing Company.

    Google Scholar 

  • Morris, M. (1997). Sexual networks and HIV. AIDS, 11(Suppl A), S209–S216.

    Article  Google Scholar 

  • Morris, M., Kretzschmar, M. (1995). Concurrent partnerships and transmission dynamics in networks. Social Networks, 17, 299–318.

    Article  Google Scholar 

  • Morris, M., & Kretzschmar, M. (1997). Concurrent partnerships and the spread of HIV. AIDS, 11, 641–648.

    Article  Google Scholar 

  • Morris, M., Podhisita, C., Waver, M. J., & Handcock, M. S. (1996). Bridge populations in the spread of HIV/AIDS in Thailand. AIDS, 10, 1265–1271.

    Article  Google Scholar 

  • Newman, M. E. J. (2003). The structure and function of complex networks. SIAM Review, 5(2), 167–256.

    Article  Google Scholar 

  • Newman, M. E. J. (2001). Scientific collaboration networks, I: network construction and fundamental results. Physical Review E, 64(016131), 1–8.

    Google Scholar 

  • Newman, M. E. J., & Watts, D. J. (1999). Scaling and percolation in the small-world network model. Physical Review E, 60(6), 7332–7342.

    Article  Google Scholar 

  • Pool, I. S., & Kochen, M. (1978). Contacts and influence. Social Networks, 1(1), 5–51.

    Article  Google Scholar 

  • Raiteri, R., Fora, R., & Sinicco, A. (1994). No HIV-1 transmission through lesbian sex. Lancet, 344(8917), 270.

    Article  Google Scholar 

  • Szwarcwald, C. L., Junior, A. B., & Pascom, A. R. Jr. (2004). Pesquisa de conhecimento P.R.S. atitudes e práticas na população brasileira de 15 a 54 anos. Technical report, Boletim Epidemiol’ogico AIDS e DST, Year XVIII – Number 1, Brazilian Ministry of Health, June 2004.

  • Travers, J., & Milgram, S. (1969). An experimental study of the small world problem. Sociometry, 4, 425–443.

    Article  Google Scholar 

  • Vieira, I. T. (2005). Small world network models of the dynamics of HIV infection. PhD thesis, University of Southampton, UK.

  • Wasserman, S., & Faust, K. (1994). Social network analysis: methods and applications. Cambridge: Cambridge University Press.

    Google Scholar 

  • Wasserman, S., & Galaskiewicz, J. (1994). Advances in social network analysis: research in the social and behavioral sciences. Thousand Oaks: Sage Publications.

    Google Scholar 

  • Watts, D. J. (1999). Princeton studies in complexity. Small worlds: the dynamics of networks between order and randomness. Princeton: Princeton University Press.

    Google Scholar 

  • Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of small-world networks. Nature, 393(4), 440–442.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. R. Harper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vieira, I.T., Cheng, R.C.H., Harper, P.R. et al. Small world network models of the dynamics of HIV infection. Ann Oper Res 178, 173–200 (2010). https://doi.org/10.1007/s10479-009-0571-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-009-0571-y

Keywords

Navigation