Skip to main content
Log in

A hierarchical location-allocation model with travel based on expected referral distances

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

The hierarchical p-median location-allocation model assumes that patrons always travel to the closest facility of appropriate level and that their interests are best served when the distances they must travel to do this are minimized. This assumption about travel behavior is unrealistic, patrons in the real world are known, for instance, to bypass lower level facilities that can serve their needs to attend higher level facilities. We introduce the concept of “expected distance under referral” to deal with such irrationality and incorporate it into a location-allocation model that minimizes the negative effects of such irrational behavior. We demonstrate the model with several types of non-optimal travel behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Annis, S. (1981). Physical access and utilization of health services in rural Guatemala. Social Science and Medicine, 15, 515–523.

    Google Scholar 

  • Batty, M. (1978). Reilly’s challenge: New laws of retail gravitation which define systems of central places. Environment and Planning A, 10, 185–219. doi:10.1068/a100185.

    Article  Google Scholar 

  • Beaumont, J. R. (1980). Spatial interaction models and the location-allocation problem. Journal of Regional Science, 20, 37–50. doi:10.1111/j.1467-9787.1980.tb00625.x.

    Article  Google Scholar 

  • Beaumont, J. R. (1987). Location-allocation models and central place theory. In A. Ghosh & G. Rushton (Eds.), Spatial analysis and location-allocation models (pp. 21–54). New York: Van Nostrand-Reinhold.

    Google Scholar 

  • Christaller, W. (1933). Die Zentralen Orte in Süddeutschland. Jena: Fischer.

    Google Scholar 

  • Freund, P. J. (1986). Health care in a declining economy: the case of Zambia. Social Science and Medicine, 23, 875–888. doi:10.1016/0277-9536(86)90216-9. Medline.

    Article  Google Scholar 

  • Fotheringham, A. S. (1983). A new set of spatial interaction models: the theory of competing destinations. Environment and Planning A, 15, 15–36. doi:10.1068/a150015.

    Article  Google Scholar 

  • Fotheringham, A. S. (1986). Modelling hierarchical destination choice. Environment and Planning A, 18, 401–418. doi:10.1068/a180401.

    Article  Google Scholar 

  • Fotheringham, A. S., & O’Kelly, M. (1989). Spatial interaction models: formulations and applications. Kluwer Academic: Dordrecht.

    Google Scholar 

  • Hodgson, M. J. (1978). Toward more realistic allocation in location-allocation models: an interaction approach. Environment and Planning, A, 10, 1273–1285. doi:10.1068/a101273.

    Article  Google Scholar 

  • Hodgson, M. J. (1981). A Location-allocation model maximizing consumers’ welfare. Regional Studies, 15, 493–506. doi:10.1080/09595238100185441.

    Article  Google Scholar 

  • Hodgson, M. J. (1984). Alternative approaches to hierarchical location-allocation systems. Geographical Analysis, 16, 275–281.

    Google Scholar 

  • Hodgson, M. J. (1986). A hierarchical location-allocation model with allocations based on facility size. Annals of Operations Research, 6, 273–289. doi:10.1007/BF02023746.

    Article  Google Scholar 

  • Hodgson, M. J. (1988). A hierarchical location-allocation model for primary health care delivery in a developing area. Social Science and Medicine, 26, 153–161. doi:10.1016/0277-9536(88)90054-8. Medline.

    Article  Google Scholar 

  • Hodgson, M. J., & Jacobsen, S. K. (1989). Comparison of a gravity and an expected distance model in a hierarchical inclusive system (Research Report RR 3/89). IMSOR, 26 p.

  • Kloos, H. (1990). Utilization of selected hospitals, health centres and health stations in central, southern, and western Ethiopia. Social Science and Medicine, 31, 101–114.

    Article  Google Scholar 

  • Kroll (1988). The multiple-depot, multiple-tour, multiple-stop delivery problem. Ph.D. dissertation, The Johns Hopkins University, Baltimore.

  • Narula, S. C., & Ogbu, U. I. (1979). An hierarchal location-allocation problem. Omega, 7, 137–143. doi:10.1016/0305-0483(79)90101-4.

    Article  Google Scholar 

  • O’Kelly, M. E. (1987). Spatial interaction based location-allocation models. In A. Ghosh & G. Rushton (Eds.), Spatial analysis and location-allocation models. New York: Van Nostrand-Reinhold.

    Google Scholar 

  • O’Kelly, M. E., & Storbeck, J. E. (1984). Hierarchical location models with probabilistic allocation. Regional Studies, 18, 121–129. doi:10.1080/09595238400185121.

    Article  Google Scholar 

  • Oppong, J. R. (1992). Facility location models for Suhum district, Ghana. PhD. Thesis, Department of Geography, The University of Alberta.

  • Oppong, J. R. (1996). Accommodating the rainy season in third world location-allocation applications. Socio-Economic Planning Sciences, 30, 121–137. doi:10.1016/0038-0121(96)00006-7.

    Article  Google Scholar 

  • Oppong, J. R., & Hodgson, M. J. (1994). Spatial accessibility to health care facilities in Suhum district, Ghana. The Professional Geographer, 46, 199–209. doi:10.1111/j.0033-0124.1994.00199.x.

    Article  Google Scholar 

  • Oppong, J. R., & Hodgson, M. J. (1998). An interaction-based location-allocation model for health facilities to limit the spread of HIV-AIDS in West Africa. Applied Geographic Studies, 2, 29–41. doi:10.1002/(SICI)1520-6319(199821)2:1<29::AID-AGS3>3.0.CO;2-V.

    Article  Google Scholar 

  • Reilly, W. J. (1929). Methods for the studying of retail relationships (Monograph No. 4). University of Texas, Austin.

  • Roy, J. R. (2004). Spatial interaction modelling. Berlin: Springer.

    Google Scholar 

  • Stewart, J. Q. (1941). An inverse distance variation for certain social influences. Science, 93, 89–90. doi:10.1126/science.93.2404.89. Medline.

    Article  Google Scholar 

  • Stewart, J. Q. (1942). A measure of the influence of a population at a distance. Sociometry, 5, 63–71. doi:10.2307/2784954.

    Article  Google Scholar 

  • Stock, R. (1983). Distance and the utilization of health facilities in rural Nigeria. Social Science and Medicine, 17, 563–570. doi:10.1016/0277-9536(83)90298-8. Medline.

    Article  Google Scholar 

  • Tietz, M. B., & Bart, P. (1968). Heuristic methods for estimating the generalized vertex median of a weighted graph. Operations Research, 16, 955–961.

    Article  Google Scholar 

  • Wilson, A. G. (1971). A family of spatial interaction models, and associated developments. Environment and Planning, 3, 31–32. doi:10.1068/a030001.

    Article  Google Scholar 

  • Yasenovskiy, V. & Hodgson, J. (2007). Hierarchical location-allocation with spatial choice interaction modelling. Annals of the Association of American Geographers, 97, 496–511.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. John Hodgson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hodgson, M.J., Jacobsen, S.K. A hierarchical location-allocation model with travel based on expected referral distances. Ann Oper Res 167, 271–286 (2009). https://doi.org/10.1007/s10479-008-0380-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-008-0380-8

Keywords

Navigation