Skip to main content
Log in

On the discrepancy function in arbitrary dimension, close to L 1

О функции дискрепанса произвольной размерности в классах интегрируемости, близких L 1

  • Published:
Analysis Mathematica Aims and scope Submit manuscript

Abstract

Let A N to be N points in the unit cube in dimension d, and consider the discrepancy function

$$ D_N (\vec x): = \sharp \left( {\mathcal{A}_N \cap \left[ {\vec 0,\vec x} \right)} \right) - N\left| {\left[ {\vec 0,\vec x} \right)} \right| $$

Here,

$$ \vec x = \left( {\vec x,...,x_d } \right),\left[ {0,\vec x} \right) = \prod\limits_{t = 1}^d {\left[ {0,x_t } \right),} $$

and \( \left| {\left[ {0,\vec x} \right)} \right| \) denotes the Lebesgue measure of the rectangle. We show that necessarily

$$ \left\| {D_N } \right\|_{L^1 (log L)^{(d - 2)/2} } \gtrsim \left( {log N} \right)^{\left( {d - 1} \right)/2} . $$

In dimension d = 2, the ‘log L’ term has power zero, which corresponds to a Theorem due to [11]. The power on log L in dimension d ≥ 3 appears to be new, and supports a well-known conjecture on the L 1 norm of D N . Comments on the discrepancy function in Hardy space also support the conjecture.

Резюме

Если d = 2, то степень логарифмического множителя ‘log L’ в классе интегрируемости равна нулю, и нащ результат совпадает в Этом случае с теоремой Халаса 1981 г. В пространствах размерности d ≥ 3 степень логарифма log L в нащей от-сенке, по-видимому, представляет собой новое продвижение в направлении доказательства известной гипотезы о L 1 норме функции D N . Мы приводим и комментарии о функции дискрепанса в пространстве Харди, также в поддержку Этой гипотезы.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Beck, A two-dimensional van Aardenne-Ehrenfest theorem in irregularities of distribution, Compositio Math., 72(1989), 269–339.

    MATH  MathSciNet  Google Scholar 

  2. J. Beck and W. W. L. Chen, Irregularities of distribution, Cambridge Tracts in Mathematics 89, Cambridge University Press (Cambridge, 1987).

    Google Scholar 

  3. A. Bernard, Espaces H1 de martingales à deux indices. Dualité avec les martingales de type “BMO”, Bull. Sci. Math., 103(1979), 297–303.

    MATH  MathSciNet  Google Scholar 

  4. S.-Y. A. Chang and R. Fefferman, A continuous version of duality of H1 with BMO on the bidisc, Ann. of Math. (2), 112(1980), 179–201.

    Article  MathSciNet  Google Scholar 

  5. S.-Y. A. Chang and R. Fefferman, Some recent developments in Fourier analysis and Hp-theory on product domains, Bull. Amer. Math. Soc., 12(1985), 1–43.

    Article  MATH  MathSciNet  Google Scholar 

  6. S.-Y. A. Chang, J. M. Wilson and T. H. Wolff, Some weighted norm inequalities concerning the Schrödinger operators, Comment. Math. Helv., 60(1985), 217–246.

    Article  MATH  MathSciNet  Google Scholar 

  7. D. Bilyk and M. T. Lacey, On the small ball inequality in three dimensions, Duke Math. J. (to appear).

  8. D. Bilyk, M. T. Lacey, and A. Vagharshakyan, On the small ball inequality in all dimensions, J. Funct. Anal. (to appear).

  9. R. Fefferman, The atomic decomposition of H1 in product spaces, Adv. in Math., 55(1985), 90–100.

    Article  MATH  MathSciNet  Google Scholar 

  10. R. Fefferman and J. Pipher, Multiparameter operators and sharp weighted inequalities, Amer. J. Math., 119(1997), 337–369.

    Article  MATH  MathSciNet  Google Scholar 

  11. G. Halász, On Roth’s method in the theory of irregularities of point distributions, Proc. Conf. of recent progress in analytic number theory, Durham, 1979; Academic Press (London, 1981), 79–94.

    Google Scholar 

  12. J.-L. Journé, A covering lemma for product spaces, Proc. Amer. Math. Soc., 96(1986), 593–598.

    Article  MATH  MathSciNet  Google Scholar 

  13. L. Lindenstrauss and L. Tzafriri, Classical Banach spaces I, Springer (Berlin, 1977).

    MATH  Google Scholar 

  14. J. Pipher, Bounded double square functions, Ann. Inst. Fourier, 36(1986), 69–82.

    MATH  MathSciNet  Google Scholar 

  15. K. F. Roth, On irregularities of distribution, Mathematika, 1(1954), 73–79.

    Article  MATH  MathSciNet  Google Scholar 

  16. W. M. Schmidt, Irregularities of distribution. VII, Acta Arith., 21(1972), 45–50.

    MATH  MathSciNet  Google Scholar 

  17. W. M. Schmidt, Lectures on irregularities of distribution, Tata Institute of Fundamental Research (Bombay, 1977).

    MATH  Google Scholar 

  18. W. M. Schmidt, Irregularities of distribution. X, in Number theory and algebra, Academic Press (New York, 1977), 311–329.

    Google Scholar 

  19. E. M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press (Princeton, N.J., 1970).

    MATH  Google Scholar 

  20. G. Wang, Sharp square-function inequalities for conditionally symmetric martingales, Trans. Amer. Math. Soc., 328(1991), 393–419.

    Article  MATH  MathSciNet  Google Scholar 

  21. R. M. G. Young, On the best possible constants in the Khintchine inequality, J. London Math. Soc., 14(1976), 496–504.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Lacey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lacey, M. On the discrepancy function in arbitrary dimension, close to L 1 . Anal Math 34, 119–136 (2008). https://doi.org/10.1007/s10476-008-0203-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10476-008-0203-9

Keywords

Navigation