Skip to main content
Log in

Shifted convolution sums of fourier coefficients with divisor functions

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

Let f(z) be a primitive holomorphic cusp form of even integral weight k for the full modular group. Denote its nth normalized Fourier coefficient (Hecke eigenvalue) by λ f (n). Let d(n) be the Dirichlet divisor function. In this paper, we establish that

$$\left.\begin{array}{ll}\quad \sum\limits_{n\leqq x}|\lambda_{f}(n^j)|d(n - 1) = c(f, j)x(log x)^{{\delta}_{j}} (1 + o(1)),\\\sum\limits_{n\leqq x}|\lambda_{f}(n^i)\lambda_{f}(n^j)|d(n - 1) = c(f, i, j)x(log x)^{{\delta}_{i,j}} (1 + o(1)),\\\quad \sum\limits_{n\leqq x}\lambda_{f}(n)^{2j}d(n - 1) = d(f, j)x(log x)^{{A}_{j}} (1 + o(1)),\end{array}\right.$$

where \({0 < \delta_{j} < 1}\), \({0 < \delta_{i,j}\leqq 1}\) (\({\delta_{i,j} = 1}\) if and only if i = j), and

$$A_j = (2j)!/(j!(j + 1)!).$$

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barban M. B., Levin B. V.: Multiplicative functions on shifted prime numbers. Dokl. Akad. Nauk SSSR 181, 778–780 (1968)

    MathSciNet  Google Scholar 

  2. T. Barnet-Lamb, D. Geraghty, M. Harris and R. Taylor, A family of Calabi–Yau varieties and potential automorphy. II, P.R.I.M.S., 47 (2011), 29–98.

  3. Blomer V.: Shifted convolution sums and subconvexity bounds for automorphic L-functions. Int. Math. Res. Not. 73, 3905–3926 (2004)

    Article  MathSciNet  Google Scholar 

  4. V. Blomer and G. Harcos, The spectral decomposition of shifted convolution sums, Duke Math. J., 144 (2008), 321–339.

  5. P. Deligne, La Conjecture de Weil, Inst. Hautes Etudes Sci. Pul. Math., 43 (1974), 29–39.

  6. W. Duke, J. Friedlander and H. Iwaniec, Bounds for automorphic L-functions, Invent. Math., 112 (1993), 1–8.

  7. W. Duke, J. Friedlander and H. Iwaniec, A quadratic divisor problem, Invent. Math., 115 (1994), 209–217.

  8. Harcos G.: An additive problem in the Fourier coefficients of cusp forms. Math. Ann. 326, 347–365 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. G. Harcos and P. Michel, The subconvexity problem for Rankin–Selberg L-functions and equidistribution of Heegner points. II, Invent. Math., 163 (2006), 581–655.

  10. Holowinsky R.: A sieve method for shifted convolution sums. Duke Math. J. 146, 401–448 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. R. Holowinsky and R. Munshi, Level aspect subconvexity for Rankin–Selberg L-functions, in: Automorphic Representations and L-Functions, Tata Institute of Fundamental Research (Mumbai, 2003).

  12. M. Jutila, The additive divisor problem and its analogs for Fourier coefficients of cusp forms. I, Math. Z., 223 (1996), 435-461; II, 225 (1997), 625–637.

  13. E. Kowalski, P. Michel and J. Vanderkam, Rankin–Selberg L-functions in the level aspect, Duke Math. J., 114 (2002), 123–191.

  14. Y.-K. Lau and G. S. Lü, Sums of Fourier coefficients of cusp forms, Quart. J. Math. (Oxford), 62 (2011), 687–716.

  15. W. Luo and P. Sarnak, Mass equidistribution for Hecke eigenforms, Comm. Pure Appl. Math., 56 (2003), 874–891.

  16. P. Michel, The subconvexity problem for Rankin–Selberg L-functions and equidistribution of Heegner points, Ann. of Math., 160 (2004), 185–236.

  17. R. A. Rankin, Contributions to the theory of Ramanujan’s function τ(n) and similar arithemtical functions II. The order of the Fourier coefficients of the integral modular forms, Proc. Cambridge Phil. Soc., 35 (1939), 357–372.

  18. Sarnak P.: Estimates for Rankin–Selberg L-functions and quantum unique ergodicity. J. Funct. Anal. 184, 419–453 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  19. A. Selberg, On the estimation of Fourier coefficients of modular forms, in: Proc. Sympos. Pure Math. 8, Amer. Math. Soc. (Providence, 1965), pp. 1–15.

  20. N. M. Timofeev and S. T. Tulyaganov, Problems similar to the additive divisor problem, Mathematical Notes, 64 (1998), 382–393.

  21. Wirsing E.: Das asymptotische Verhalten von Summen über multiplikative Funktionen. Math. Ann. 143, 75–102 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  22. E. Wirsing, Das Asymptotische Verhalten von Summen über multiplikative Funktionen. II, Acta Math. Acad. Sci. Hungar., 18 (1967), 411–467.

  23. D. Wolke, Multiplikative Funktionen auf schnell wachsenden Folgen., J. Reine Angew. Math., 251 (1971), 54–67.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Lü.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lü, G. Shifted convolution sums of fourier coefficients with divisor functions. Acta Math. Hungar. 146, 86–97 (2015). https://doi.org/10.1007/s10474-015-0499-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-015-0499-4

Key words and phrases

Mathematics Subject Classification

Navigation