Skip to main content
Log in

Hyperstability of the Cauchy equation on restricted domains

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

We show that a very classical result, proved by T. Aoki, Z. Gajda and Th. M. Rassias and concerning the Hyers–Ulam stability of the Cauchy equation f(x+y)=f(x)+f(y), can be significantly improved. We also provide some immediate applications of it (among others for the cocycle equation, which is useful in characterizations of information measures). In particular, we give a solution to a problem that was formulated more than 20 years ago and concerned optimality of some estimations.

The proof of that result is based on a fixed point theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64–66.

    Article  MathSciNet  MATH  Google Scholar 

  2. J. A. Baker, The stability of certain functional equations, Proc. Amer. Math. Soc., 112 (1991), 729–732.

    Article  MathSciNet  MATH  Google Scholar 

  3. C. Borelli Forti, Solutions of a non-homogeneous Cauchy equation, Radovi Mat., 5 (1989), 213–222.

    MathSciNet  MATH  Google Scholar 

  4. D. G. Bourgin, Approximately isometric and multiplicative transformations on continuous function rings, Duke Math. J., 16 (1949), 385–397.

    Article  MathSciNet  MATH  Google Scholar 

  5. D. G. Bourgin, Classes of transformations and bordering transformations, Bull. Amer. Math. Soc., 57 (1951), 223–237.

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Brzdȩk, A note on stability of additive mappings, in Th. M. Rassias and J. Tabor (Eds.) Stability of Mappings of Hyers–Ulam Type, Hadronic Press, Inc. (Florida, 1994), pp. 19–22.

    Google Scholar 

  7. J. Brzdȩk, J. Chudziak and Zs. Páles, A fixed point approach to stability of functional equations, Nonlinear Anal., 74 (2011), 6728–6732.

    Article  MathSciNet  Google Scholar 

  8. J. Brzdȩk and K. Ciepliński, A fixed point approach to the stability of functional equations in non-Archimedean metric spaces, Nonlinear Anal., 74 (2011), 6861–6867.

    Article  MathSciNet  Google Scholar 

  9. L. Cădariu and V. Radu, Fixed point methods for the generalized stability of functional equations in a single variable, Fixed Point Theory Appl., 2008 (2008), Article ID 749392, 15 pages.

  10. K. Ciepliński, Applications of fixed point theorems to the Hyers–Ulam stability of functional equations – a survey, Ann. Funct. Anal., 3 (2012), 151–164.

    MathSciNet  MATH  Google Scholar 

  11. T. M. K. Davison and B. Ebanks, Cocycles on cancellative semigroups, Publ. Math. Debrecen, 46 (1995), 137–147.

    MathSciNet  MATH  Google Scholar 

  12. B. Ebanks, Generalized Cauchy difference functional equations, Aequationes Math., 70 (2005), 154–176.

    Article  MathSciNet  MATH  Google Scholar 

  13. B. Ebanks, Generalized Cauchy difference equations. II, Proc. Amer. Math. Soc., 136 (2008), 3911–3919.

    Article  MathSciNet  MATH  Google Scholar 

  14. B. Ebanks, P. Sahoo and W. Sander, Characterizations of Information Measures, World Scientific (Singapore–New Jersey–London–Hong Kong, 1998).

    Book  Google Scholar 

  15. B. Ebanks, P. L. Kannappan and P. K. Sahoo, Cauchy differences that depend on the product of arguments, Glasnik Mat., 27 (1992), 251–261.

    MathSciNet  MATH  Google Scholar 

  16. J. Erdős, A remark on the paper “On some functional equations” by S. Kurepa, Glasnik Mat.-Fiz. Astronom., 14 (1959), 3–5.

    Google Scholar 

  17. I. Fenyő and G.-L. Forti, On the inhomogeneous Cauchy functional equation, Stochastica, 5 (1981), 71–77.

    Google Scholar 

  18. G.-L. Forti, Comments on the core of the direct method for proving Hyers–Ulam stability of functional equations, J. Math. Anal. Appl., 295 (2004), 127–133.

    Article  MathSciNet  MATH  Google Scholar 

  19. G.-L. Forti, Elementary remarks on Ulam–Hyers stability of linear functional equations, J. Math. Anal. Appl., 328 (2007), 109–118.

    Article  MathSciNet  MATH  Google Scholar 

  20. Z. Gajda, On stability of additive mappings, Int. J. Math. Math. Sci., 14 (1991), 431–434.

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Gilanyi, Z. Kaiser and Zs. Páles, Estimates to the stability of functional equations, Aequationes Math., 73 (2007), 125–143.

    Article  MathSciNet  MATH  Google Scholar 

  22. E. Gselmann, Hyperstability of a functional equation, Acta Math. Hungar., 124 (2009), 179–188.

    Article  MathSciNet  MATH  Google Scholar 

  23. D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U.S.A., 27 (1941), 222–224.

    Article  MathSciNet  Google Scholar 

  24. D. H. Hyers, G. Isac and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser (Boston, 1998).

    Book  MATH  Google Scholar 

  25. A. Járai, Gy. Maksa and Zs. Páles, On Cauchy-differences that are also quasisums, Publ. Math. Debrecen, 65 (2004), 381–398.

    MathSciNet  MATH  Google Scholar 

  26. B. Jessen, J. Karpf and A. Thorup, Some functional equations in groups and rings, Math. Scand., 22 (1968), 257–265.

    MathSciNet  MATH  Google Scholar 

  27. S.-M. Jung, Hyers–Ulam–Rassias Stability of Functional Equations in Nonlinear Analysis, Springer Optimization and Its Applications 48, Springer (New York–Dordrecht–Heidelberg–London, 2011).

    Book  MATH  Google Scholar 

  28. S.-M. Jung and T.-S. Kim, A fixed point approach to the stability of the cubic functional equation, Bol. Soc. Mat. Mexicana, 12 (2006), 51–57.

    MathSciNet  MATH  Google Scholar 

  29. S.-M. Jung, T.-S. Kim and K.-S. Lee, A fixed point approach to the stability of quadratic functional equation, Bull. Korean Math. Soc., 43 (2006), 531–541.

    Article  MathSciNet  MATH  Google Scholar 

  30. Y.-S. Jung and I.-S. Chang, The stability of a cubic functional equation and fixed point alternative, J. Math. Anal. Appl., 306 (2005), 752–760.

    Article  MathSciNet  MATH  Google Scholar 

  31. M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, Cauchy’s Equation and Jensen’s Inequality, 2nd ed., Birkhäuser (2009).

    Book  MATH  Google Scholar 

  32. Gy. Maksa, The stability of the entropy of degree alpha, J. Math. Anal. Appl., 346 (2008), 17–21.

    Article  MathSciNet  MATH  Google Scholar 

  33. Gy. Maksa and Zs. Páles, Hyperstability of a class of linear functional equations, Acta Math. Acad. Paedag. Nyíregyháziensis, 17 (2001), 107–112.

    MATH  Google Scholar 

  34. M. Mirzavaziri and M. S. Moslehian, A fixed point approach to stability of a quadratic equation, Bull. Braz. Math. Soc., New Series, 37 (2006), 361–376.

    Article  MathSciNet  MATH  Google Scholar 

  35. V. Radu, The fixed point alternative and the stability of functional equations, Fixed Point Theory, 4 (2003), 91–96.

    MathSciNet  MATH  Google Scholar 

  36. Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297–300.

    Article  MathSciNet  MATH  Google Scholar 

  37. Th. M. Rassias, On a modified Hyers–Ulam sequence, J. Math. Anal. Appl., 158 (1991), 106–113.

    Article  MathSciNet  MATH  Google Scholar 

  38. Th. M. Rassias and P. Semrl, On the behavior of mappings which do not satisfy Hyers–Ulam stability, Proc. Amer. Math. Soc., 114 (1992), 989–993.

    Article  MathSciNet  MATH  Google Scholar 

  39. P. K. Sahoo and P. Kannappan, Introduction to Functional Equations, CRC Press (Boca Raton–London–New York, 2011).

    MATH  Google Scholar 

  40. J. Sikorska, On a direct method for proving the Hyers–Ulam stability of functional equations, J. Math. Anal. Appl., 372 (2010), 99–109.

    Article  MathSciNet  MATH  Google Scholar 

  41. F. Skof, On the stability of functional equations on a restricted domain and related topics, in Th. M. Rassias and J. Tabor (Eds.) Stability of Mappings of Hyers–Ulam Type, Hadronic Press (Palm Harbor, 1994), pp. 141–151.

    Google Scholar 

  42. S. M. Ulam, Problems in Modern Mathematics, Science Editions, John-Wiley & Sons Inc. (New York, 1964).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janusz Brzdȩk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brzdȩk, J. Hyperstability of the Cauchy equation on restricted domains. Acta Math Hung 141, 58–67 (2013). https://doi.org/10.1007/s10474-013-0302-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-013-0302-3

Key words and phrases

Mathematics Subject Classification

Navigation