Skip to main content
Log in

Transformations of discrete closure systems

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

Discrete systems such as sets, monoids, groups are familiar categories. The internal structure of the latter two is defined by an algebraic operator. In this paper we concentrate on discrete systems that are characterized by unary operators; these include choice operators σ, encountered in economics and social theory, and closure operators φ, encountered in discrete geometry and data mining. Because, for many arbitrary operators α, it is easy to induce a closure structure on the base set, closure operators play a central role in discrete systems.

Our primary interest is in functions f that map power sets 2U into power sets 2U, which are called transformations. Functions over continuous domains are usually characterized in terms of open sets. When the domains are discrete, closed sets seem more appropriate. In particular, we consider monotone transformations which are “continuous”, or “closed”. These can be used to establish criteria for asserting that “the closure of a transformed image under f is equal to the transformed image of the closure”.

Finally, we show that the categories MCont and MClo of closure systems with morphisms given by the monotone continuous transformations and monotone closed transformations respectively have concrete direct products. And the supercategory Clo of MClo whose morphisms are just the closed transformations is shown to be cartesian closed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Adámek, H. Herrlich and G. E. Strecker, Abstract and Concrete Categories, Wiley & Sons (New York, 1990).

    MATH  Google Scholar 

  2. M. A. Aizerman and A. V. Malishevski, General theory of best variants choice: Some aspects, IEEE Trans. on Automatic Control, 26 (1981), 1030–1040.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. A. Albert (Ed.), Studies in Modern Algebra, Math. Assoc. of Amer. (Englewood Cliffs, NJ, 1963).

    MATH  Google Scholar 

  4. K. J. Arrow, Rational choice functions and orderings, Economica, 26 (1959), 121–127.

    Article  Google Scholar 

  5. G. Brightwell, H. Fay Dowker, R. S. Garcia, J. Hensen and R. D. Sorkin, Observables’ in causal set cosmology, Phys. Rev., D67 (2003), 084031.

    Google Scholar 

  6. N. Caspard and B. Monjardet, The lattices of closure systems, closure operators and implicational systems on a finite set: A survey, Discrete Applied Math., 127 (2003), 241–269.

    Article  MathSciNet  MATH  Google Scholar 

  7. V. Claes, E. Lowen-Colebunders and G. Sonck, Cartesian closed topological hull of the construct of closure spaces, Theory and Appl. of Cat., 18 (2001), 481–489.

    MathSciNet  Google Scholar 

  8. G. B. Dantzig, Linear Programming and Extensions, Princeton Univ. Press (Princeton, NJ, 1963).

    MATH  Google Scholar 

  9. K. Denecke, M. Erné and S. L. Wismath, Galois Connections and Applications, Kluwer Academic Publishers (Dordrecht, 2004).

    MATH  Google Scholar 

  10. D. Dikranjan, E. Giuli and A. Tozzi, Topological categories and closure operators, Quaest. Math., 11 (1988), 323–337.

    Article  MathSciNet  MATH  Google Scholar 

  11. P. H. Edelman, Abstract convexity and meet-distributive lattices, in: Combinatorics and Ordered Sets (Arcata, CA, 1986), pp. 127–150.

    Chapter  Google Scholar 

  12. P. H. Edelman and R. E. Jamison, The theory of convex geometries, Geometriae Dedicata, 19 (1985), 247–270.

    Article  MathSciNet  MATH  Google Scholar 

  13. C. J. Everett, Closure operators and Galois theory in lattices, Trans. Amer. Math. Soc., 55 (1944), 493–513.

    MathSciNet  Google Scholar 

  14. B. Ganter and R. Wille, Formal Concept Analysis – Mathematical Foundations, Springer Verlag (Heidelberg, 1999).

    Book  MATH  Google Scholar 

  15. R. E. Jamison and J. L. Pfaltz, Closure spaces that are not uniquely generated, Discrete Appl Math., 147 (2005), 69–79, also in: Ordinal and Symbolic Data Analysis, OSDA 2000 (Brussels, 2000).

    Article  MathSciNet  MATH  Google Scholar 

  16. R. E. Jamison-Waldner, A perspective on abstract convexity: classifying alignments by varieties, in: D. C. Kay and M. Breen (Eds.) Convexity and Related Combinatorial Geometry, Marcel Dekker (New York, 1982).

    Google Scholar 

  17. M. R. Johnson and R. A. Dean, Locally complete path independent choice functions and their lattices, Math. Social Sciences, 42 (2001), 53–87.

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Jung, Cartesian Closed Categories of Domains, Center for Mathematics and Computer Science (Amsterdam, Neth., 1989).

    MATH  Google Scholar 

  19. B. Korte, L. Lovász and R. Schrader, Greedoids, Springer-Verlag (Berlin, 1991).

    Book  MATH  Google Scholar 

  20. G. A. Koshevoy, Choice functions and abstract convex geometries, Math. Social Sciences, 38 (1999), 35–44.

    Article  MathSciNet  MATH  Google Scholar 

  21. C. Lindig and G. Snelting, Assessing modular structure of legacy code based on mathematical concept analysis, in: Proc. of 1997 International Conf. on Software Engineering (Boston, MA, 1997), pp. 349–359.

  22. A. V. Malishevski, Path independence in serial-parallel data processing, Math. Social Sciences, 27 (1994), 335–367.

    Article  MathSciNet  MATH  Google Scholar 

  23. B. Monjardet, A use for frequently rediscovering a concept, Order, 1 (1985), 415–416.

    Article  MathSciNet  MATH  Google Scholar 

  24. B. Monjardet, Closure operators and choice operators: A survey, in: Fifth Intern. Conf. on Concept Lattices and their Applications (Montpellier, 2007).

    Google Scholar 

  25. B. Monjardet and V. Raderinirina, The duality between the antiexchange closure operators and the path independent choice operators on a finite set, Math. Social Sciences, 41 (2001), 131–150.

    Article  MATH  Google Scholar 

  26. O. Ore, Galois connexions, Trans. of AMS, 55 (1944), 493–513.

    MathSciNet  MATH  Google Scholar 

  27. O. Ore, Mappings of closure relations, Annals of Math., 47 (1946), 56–72.

    Article  MathSciNet  MATH  Google Scholar 

  28. N. Pasquier, Y. Bastide, R. Taouil and L. Lakhal, Closed set based discovery of small covers for association rules, Actes des 15e journées Bases de données avancées (1999), 361–381.

  29. J. L. Pfaltz, Convexity in directed graphs, J. of Comb. Theory, 10 (1971), 143–162.

    Article  MathSciNet  MATH  Google Scholar 

  30. J. L. Pfaltz, Closure lattices, Discrete Mathematics, 154 (1996), 217–236.

    Article  MathSciNet  MATH  Google Scholar 

  31. J. L. Pfaltz, Establishing logical rules from empirical data, Intern. Journal on Artificial Intelligence Tools, 17 (2008), 985–1001.

    Article  Google Scholar 

  32. J. L. Pfaltz, Mathematical continuity in dynamic social networks, in: A. Datta, S. Shulman, B. Zheng, S. Lin, A. Sun and E. Lim (Eds.), Third International Conf. on Social Informatics, SocInfo2011, LNCS 6984 (2011), pp. 36–50.

    Chapter  Google Scholar 

  33. J. L. Pfaltz and J. Šlapal, Neighborhood transformations, in: 40th Southeastern International Conf. on Combinatorics, Graph Theory and Computing (Boca Raton, FL, 2009).

    Google Scholar 

  34. B. C. Pierce, Basic Category Theory for Computer Scientists, MIT Press (Cambridge, MA, 1991).

    Google Scholar 

  35. C. R. Plott, Path independence, rationality and social choice, Econometrica, 41 (1973), 1075–1091.

    Article  MathSciNet  MATH  Google Scholar 

  36. D. P. Rideout and R. D. Sorkin, Evidence for a continuum limit in causal set dynamics, Phys. Rev., D63 (2001), 104011.

    MathSciNet  Google Scholar 

  37. A. Rosenfeld and J. L. Pfaltz, Sequential operations in digital picture processing, J. of the ACM, 13 (1966).

  38. W. C. Rounds and G. Zhang, Clausal logic and logic programming in algebraic domains, Information & Control, 171 (2001), 183–2001.

    MathSciNet  MATH  Google Scholar 

  39. A. Sen, Social choice theory: A re-examination, Econometricia, 45 (1977), 53–88.

    Article  MATH  Google Scholar 

  40. R. D. Sorkin, Causal Sets: Discrete Gravity, Prepared for School on Quantum Gravity (Valdivia, Chile, 2002).

  41. H. S. Stone, Discrete Mathematical Structures and Their Applications, Science Research Associates (Palo Alto, 1973).

    MATH  Google Scholar 

  42. P. Valtchev, R. Missaoui and R. Godin, A framework for incremental generation of frequent closed itemsets, in: P. Hammer (Ed.) Workshop on Discrete Mathematics & Data Mining, 2nd SIAM Conf. on Data Mining (Arlington, VA, 2002), pp. 75–86.

    Google Scholar 

  43. J. Šlapal, A Galois correspondence for digital topology, in: K. Denecke, M. Erné and S. L. Wismath (Eds.) Galois Connections and Applications, Kluwer Academic Publishers (Dordrecht, 2004), pp. 413–424.

    Google Scholar 

  44. R. Wille, Restructuring lattice theory: An approach based on hierarchies of concepts, in: I. Rival (Ed.) Ordered Sets, Reidel (Dordrecht, Boston, 1982), pp. 445–470.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Pfaltz.

Additional information

Corresponding author.

The second author acknowledges support from the IT4Innovations Centre of Excellence, project CZ.1.05/1.1.00/02.0070.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pfaltz, J.L., Šlapal, J. Transformations of discrete closure systems. Acta Math Hung 138, 386–405 (2013). https://doi.org/10.1007/s10474-012-0262-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-012-0262-z

Key words and phrases

Mathematics Subject Classification

Navigation