Skip to main content
Log in

On estimating the rate of best trigonometric approximation by a modulus of smoothness

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

Best trigonometric approximation in L p , 1≦p≦∞, is characterized by a modulus of smoothness, which is equivalent to zero if the function is a trigonometric polynomial of a given degree. The characterization is similar to the one given by the classical modulus of smoothness. The modulus possesses properties similar to those of the classical one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Babenko, On the Jackson–Stechkin inequality for the best L 2-approximations of functions by trigonometric polynomials, Proc. Steklov Inst. Math., 2001, Approximation Theory, Asymptotical expansions, suppl. 1, S30–S47.

  2. A. G. Babenko, N. I. Chernykh and V. T. Shevaldin, The Jackson–Stechkin inequality in L 2 with a trigonometric modulus of continuity, Mat. Zametki, 65 (1999), 928–932 (in Russian); English translation: Math. Notes, 65 (1999), 777–781.

    MathSciNet  Google Scholar 

  3. P. L. Butzer and R. J. Nessel, Fourier Analysis and Approximation, Birkhäuser Verlag (Basel, 1971).

    MATH  Google Scholar 

  4. N. I. Chernykh, Best approximation of periodic functions by trigonometric polynomials in L 2, Mat. Zametki, 2 (1967), 513–522; English translation: Math. Notes, 2 (1967), 803–808.

    MathSciNet  Google Scholar 

  5. R. A. DeVore and G. G. Lorentz, Constructive Approximation, Springer Verlag (Berlin, 1993).

    MATH  Google Scholar 

  6. B. R. Draganov, A new modulus of smoothness for trigonometric polynomial approximation, East J. Approx., 8 (2002), 465–499.

    MathSciNet  MATH  Google Scholar 

  7. S. Foucart, Y. Kryakin and A. Shadrin, On the exact constant in the Jackson–Stechkin inequality for the uniform metric, Const. Approx., 29 (2009), 2, 157–179.

    Article  MathSciNet  MATH  Google Scholar 

  8. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, fourth edition, Oxford University Press (Oxford, 1975).

    Google Scholar 

  9. J. Riordan, Combinatorial Identities, John Wiley & Sons (New York, 1968).

    MATH  Google Scholar 

  10. I. J. Schoenberg, On trigonometric spline interpolation, J. Math. Mech., 13 (1964), 795–825.

    MathSciNet  MATH  Google Scholar 

  11. L. L. Schumaker, Spline Functions: Basic Theory, Wiley-Interscience (New York, 1981).

    MATH  Google Scholar 

  12. A. Sharma and I. Tzimbalario, Some linear differential operators and generalized finite differences, Mat. Zametki, 21 (1977), 161–172 (in Russian); English translation: Math. Notes, 21 (1977), 91–97.

    MathSciNet  MATH  Google Scholar 

  13. V. T. Shevaldin, Extremal interpolation with smallest value of the norm of a linear differential operator, Mat. Zametki, 27 (1980), 721–740 (in Russian); English translation: Math. Notes, 27 (1980), 344–354.

    MathSciNet  MATH  Google Scholar 

  14. V. T. Shevaldin, Some problems of extremal interpolation in the mean for linear difference operators, Tr. Mat. Inst. Steklova, 164 (1983), 203–240 (in Russian); English translation: Proc. Steklov Inst. Math., 164 (1985), 233–273.

    MathSciNet  MATH  Google Scholar 

  15. V. T. Shevaldin, The Jackson–Stechkin inequlaity in the space \(C(\mathbb{T})\) with trigonometric continuity modulus annihilating the first harmonics, Proc. Steklov Inst. Math., 2001, Approximation Theory, Asymptotical expansions, suppl. 1, S206–S213.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Borislav R. Draganov.

Additional information

The research was supported by grant No. 49/2009 of the National Science Fund to the University of Sofia.

Corresponding author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Draganov, B.R., Parvanov, P.E. On estimating the rate of best trigonometric approximation by a modulus of smoothness. Acta Math Hung 131, 360–379 (2011). https://doi.org/10.1007/s10474-011-0072-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-011-0072-8

Key words and phrases

2000 Mathematics Subject Classification

Navigation