Skip to main content
Log in

The lattice point discrepancy of a torus in ℝ3

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

This article provides an asymptotic formula for the number of integer points in the three-dimensional body

$$ \left( \begin{gathered} x \hfill \\ y \hfill \\ z \hfill \\ \end{gathered} \right) = t\left( \begin{gathered} (a + r\cos \alpha )\cos \beta \hfill \\ (a + r\cos \alpha )\sin \beta \hfill \\ r\sin \alpha \hfill \\ \end{gathered} \right),0 \leqq \alpha ,\beta < 2\pi ,0 \leqq r \leqq b, $$

for fixed a > b > 0 and large t.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Chamizo, Lattice points in bodies of revolution, Acta Arith, 85 (1998), 265–277.

    MATH  MathSciNet  Google Scholar 

  2. F. Chamizo and H. Iwaniec, On the sphere problem, Rev Mat Iberoamericana, 11 (1995), 417–429.

    MATH  MathSciNet  Google Scholar 

  3. K. Haberland, Über die Anzahl der Gitterpunkte in konvexen Gebieten, Preprint FSU Jena (1993).

  4. D. R. Heath-Brown, Lattice points in the sphere, in: (Győry et al. eds.), Number Theory in Progress, 2, de Gruyter (Berlin, 1999), pp. 883–892.

  5. E. Hlawka, Über Integrale auf konvexen Körpern I, Monatsh Math, 54, 1–36, II, 54 (1950), 81–99.

    Article  MathSciNet  Google Scholar 

  6. M. N. Huxley, Area, Lattice Points, and Exponential Sums, LMS Monographs, New Ser, 13, University Press (Oxford, 1996).

    MATH  Google Scholar 

  7. A. Ivić, The Laplace transform of the square in the circle and divisor problems, Studia Sci. Math. Hung., 32 (1996), 181–205.

    MATH  Google Scholar 

  8. A. Ivić, E. Krätzel, M. Kühleitner and W. G. Nowak, Lattice points in large regions and related arithmetic functions: Recent developments in a very classic topic, in: Proceedings Conf. on Elementary and Analytic Number Theory ELAZ’04, held in Mainz, May 24–28, W. Schwarz and J. Steuding eds., Franz Steiner Verlag (2006), pp. 89–128.

  9. H. Iwaniec and E. Kowalski, Analytic Number Theory, AMS Coll Publ 53. (Providence, R.I., 2004).

  10. E. Krätzel, Lattice points, VEB Deutscher Verlag der Wissenschaften (Berlin, 1988).

    MATH  Google Scholar 

  11. E. Krätzel, Analytische Funktionen in der Zahlentheorie, Teubner (Wiesbaden, 2000).

  12. E. Krätzel, Lattice points in three-dimensional large convex bodies, Math Nachr., 212 (2000), 77–90.

    Article  MATH  MathSciNet  Google Scholar 

  13. E. Krätzel, Lattice points in three-dimensional convex bodies with points of Gaussian curvature zero at the boundary, Monatsh Math., 137 (2002), 197–211.

    Article  MATH  MathSciNet  Google Scholar 

  14. E. Krätzel, Lattice points in some special three-dimensional convex bodies with points of Gaussian curvature zero at the boundary, Comment Math Univ Carolinae., 43 (2002), 755–771.

    MATH  Google Scholar 

  15. E. Krätzel and W. G. Nowak, The lattice discrepancy of bodies bounded by a rotating Lamé’s curve, Monatsh. Math., to appear (2008).

  16. W. Müller, Lattice points in large convex bodies, Monatsh. Math., 128 (1999), 315–330.

    Article  MATH  MathSciNet  Google Scholar 

  17. W. G. Nowak, A mean-square bound for the lattice discrepancy of bodies of rotation with flat points on the boundary, Acta Arith., 127 (2007), 285–299.

    Article  MATH  MathSciNet  Google Scholar 

  18. W. G. Nowak, On the lattice discrepancy of bodies of rotation with boundary points of curvature zero, Arch. Math. (Basel), to appear (2008).

  19. M. Peter, Lattice points in convex bodies with planar points on the boundary, Monatsh. Math., 135 (2002), 37–57.

    Article  MATH  MathSciNet  Google Scholar 

  20. D. A. Popov, On the number of lattice points in three-dimensional bodies of revolution, Izv. Math., 64 (2000), 343–361; translation from Izv. RAN, Ser. Mat., 64 (2000), 121–140.

    Article  MATH  MathSciNet  Google Scholar 

  21. I. M. Vinogradov, Improvement of asymptotic formulas for the number of lattice points in a region of three dimensions, Izv. Akad. Nauk SSSR, Ser. Mat., 19 (1955), 3–10 (in Russian).

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. G. Nowak.

Additional information

The author gratefully acknowledges support from the Austrian Science Fund (FWF) under project Nr. P18079-N12.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nowak, W.G. The lattice point discrepancy of a torus in ℝ3 . Acta Math Hung 120, 179–192 (2008). https://doi.org/10.1007/s10474-007-7129-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-007-7129-8

Key words and phrases

2000 Mathematics Subject Classification

Navigation