Skip to main content
Log in

Asymptotic properties of the algebraic moment range process

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

Let M n denote the n-th moment space of the set of all probability measures on the interval [0, 1], P n the uniform distribution on the set M n and r n + 1 the maximal range of the (n + 1)-th moments corresponding to a random moment point C n with distribution P n on M n . We study several asymptotic properties of the stochastic process (r nt⌋+1) t∈[0,T] if n → ∞. In particular weak convergence to a Gaussian process and a large deviation principle are established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series, 55 (1964).

  2. P. Billingsley, Convergence of Probability Measures, John Wiley & Sons Inc., second edition, ISBN 0-471-19745-9, A Wiley-Interscience Publication (New York, 1999).

    MATH  Google Scholar 

  3. J. M. Borwein and A. S. Lewis, Partially-finite programming in L 1 and the existence of maximum entropy estimates, SIAM J. Optim., 3 (1993), 248–267. ISSN 1052-6234.

    Article  MATH  Google Scholar 

  4. J. Bretagnolle, Formule de Chernoff pour les lois empiriques de variables a valeurs dans des espaces generaux, Asterisque, 68 (1979), 32–52.

    Google Scholar 

  5. F. C. Chang, J. H. B. Kemperman and W. J. Studden, A normal limit theorem for moment sequences, Ann. Probab., 21 (1993), 1295–1309. ISSN 0091-1798.

    MATH  Google Scholar 

  6. A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications, Springer-Verlag (New York, 1998), second edition. ISBN 0-387-98406-2.

    MATH  Google Scholar 

  7. D. Dacunha-Castelle et M. Duflo, Probabilités et Statistique, Tome 2, Problèmes à temps mobile, Masson (Paris, 1993). ISBN 2-225-84373-2.

    Google Scholar 

  8. H. Dette and W. J. Studden, The Theory of Canonical Moments with Applications in Statistics, Probability, and Analysis, John Wiley & Sons Inc. (New York, 1997). ISBN 0-471-10991-6. A Wiley-Interscience Publication.

    MATH  Google Scholar 

  9. F. Gamboa and E. Gassiat, Bayesian methods and maximum entropy for ill-posed inverse problems, Ann. Statist., 25 (1997), 328–350. ISSN 0090-5364.

    Article  MATH  Google Scholar 

  10. F. Gamboa, A. Rouault and M. Zani, A functional large deviations principle for quadratic forms of Gaussian stationary processes, Stat. & Probab. Letters, 43 (1999), 299–308.

    Article  MATH  Google Scholar 

  11. F. Gamboa and L. Lozada Chang, Large deviations for a random power moment problem, Ann. Probab., 32 (2004), 2819–2837.

    Article  MATH  Google Scholar 

  12. J. C. Gupta, Partial Hausdorff sequences and symmetric probabilities on finite products of {0,}, Sankhyā, 61 (1999), 347–357.

    MATH  Google Scholar 

  13. S. Karlin and L. S. Shapeley, Geometry of Moment Spaces, Amer. Math. Soc. Memoir No. 12, Amer. Math. Soc. (Providence, Rhode Island, 1953).

    Google Scholar 

  14. S. Karlin and W. J. Studden, Tchebycheff Systems: With Applications in Analysis and Statistics, Interscience Publishers John Wiley & Sons (New York-London-Sydney, 1966).

    MATH  Google Scholar 

  15. M. G. Kreĭn and A. A. Nudelman, The Markov Moment Problem and Extremal Problems, American Mathematical Society (Providence, R.I., 1977). ISBN 0-8218-4500-4. Ideas and problems of P. L.Čebyšev and A. A. Markov and their further development, Translated from the Russian by D. Louvish, Translations of Mathematical Monographs, Vol. 50.

    Google Scholar 

  16. H. S. Landau, Moments in Mathematics, Proc. Symposia in Applied Mathematics 37, AMS (Providence, RI, 1987).

    MATH  Google Scholar 

  17. P. E. Protter, Stochastic Integration and Differential Equations, ISBN 3-540-00313-4. Springer (Berlin, 2004).

    MATH  Google Scholar 

  18. J. Najim, A Cramér type theorem for weighted random variables, Elec. Jour. of Prob., 4 (2002), 1–32.

    Google Scholar 

  19. A. Rouault, Pathwise asymptotic behavior of random determinants in the uniform Gram and Wishart ensembles, preprint (2005).

  20. J. A. Shohat and J. D. Tarmakin, The Problem of Moments, Mathematical Surveys No. 1, Amer. Math. Soc. (Providence, Rhode Island, 1943).

    MATH  Google Scholar 

  21. M. Skibinsky, The range of the (n + 1)-th moment for distributions on [0, 1], J. Appl. Probability, 4 (1967), 543–552.

    Article  MATH  Google Scholar 

  22. M. Skibinsky, Extreme n-th moments for distributions on [0, 1] and the inverse of a moment space map, J. Appl. Probability, 5 (1968), 693–701.

    Article  MATH  Google Scholar 

  23. M. Skibinsky, Some striking properties of binomial and beta moments, Ann. Math. Statist., 40 (1969), 1753–1764.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dette, H., Gamboa, F. Asymptotic properties of the algebraic moment range process. Acta Math Hung 116, 247–264 (2007). https://doi.org/10.1007/s10474-007-6047-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-007-6047-0

Key words and phrases

2000 Mathematics Subject Classification

Navigation