Skip to main content
Log in

Combining probabilistic algorithms, Constraint Programming and Lagrangian Relaxation to solve the Vehicle Routing Problem

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

This paper presents an original hybrid approach to solve the Capacitated Vehicle Routing Problem (CVRP). The approach combines a Probabilistic Algorithm with Constraint Programming (CP) and Lagrangian Relaxation (LR). After introducing the CVRP and reviewing the existing literature on the topic, the paper proposes an approach based on a probabilistic Variable Neighbourhood Search (VNS) algorithm. Given a CVRP instance, this algorithm uses a randomized version of the classical Clarke and Wright Savings constructive heuristic to generate a starting solution. This starting solution is then improved through a local search process which combines: (a) LR to optimise each individual route, and (b) CP to quickly verify the feasibility of new proposed solutions. The efficiency of our approach is analysed after testing some well-known CVRP benchmarks. Benefits of our hybrid approach over already existing approaches are also discussed. In particular, the potential flexibility of our methodology is highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alba, E., Dorronsoro, B.: A hybrid cellular genetic algorithm for the capacitated vehicle routing problem. In: Abraham, A., Grosan, C., Pedrycz, W. (eds.) Engineering Evolutionary Intelligent Systems (Studies in Computational Intelligence, 82), pp. 379–422. Springer, New York (2008)

    Google Scholar 

  2. Altinel, I., Oncan, T.: A new enhancement of the Clarke and Wright savings heuristic for the capacitated vehicle routing problem. J. Oper. Res. Soc. 56, 954–961 (2005)

    Article  MATH  Google Scholar 

  3. Apt, K., Wallace, M.: Constraint Logic Programming using ECLiPSe. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  4. Berger, J., Barkaoui, M.: A hybrid genetic algorithm for the capacitated vehicle routing problem. In: Cantó-Paz, E. (ed.) Proceedings of the International Genetic and Evolutionary Computation Conference, Chicago, IL, USA, pp. 646–656. Springer, New York (1996)

    Google Scholar 

  5. Boschetti, M., Maniezzo, V.: Benders decomposition, Lagrangean Relaxation and metaheuristic design. Journal of Heuristics 15, 283–312 (2009)

    Article  MATH  Google Scholar 

  6. Buxey, G.: The Vehicle Scheduling Problem and Monte Carlo Simulation. J. Oper. Res. Soc. 30, 563–573 (1979)

    MATH  Google Scholar 

  7. Christofides, N., Mingozzi, A., Toth, P.: The Vehicle Routing Problem. In: Combinatorial Optimization, pp. 315–338. Wiley (1979)

  8. Clarke, G., Wright, J.: Scheduling of vehicles from a central depot to a number of delivering points. Oper. Res. 12, 568–581 (1964)

    Article  Google Scholar 

  9. Cordeau, J., Laporte, G., Savelsbergh, M., Vigo, D.: Vehicle routing. In: Barnhart, C., Laporte, G. (eds.) Handbook in Operations Research and Management Science, vol. 14, pp. 367–428. Elsevier, Amsterdam (2007)

    Google Scholar 

  10. Dantzig, G., Ramser, J.: The truck dispatching problem. Manage. Sci. 6, 80–91 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  11. Faulin, J., Juan, A.A.: The algacea-1 method for the capacitated Vehicle Routing Problem. Int. Trans. Oper. Res. 15, 1–23 (2008)

    Article  MathSciNet  Google Scholar 

  12. Faulin, J., Gilibert, M., Juan, A.A., Ruiz, R., Vilajosana, X.: Sr-1: a simulation-based algorithm for the capacitated Vehicle Routing Problem. In: Proceedings of the 2008 Winter Simulation Conference (2008)

  13. Feo, T., Resende, M.: Greedy randomized adaptive search procedures. J. Glob. Optim. 6, 109–133 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fernández, P., García, L., Mayado, A., Sanchís, J.: A real delivery problem dealt with Monte Carlo techniques. Top 8, 57–71 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Festa, P., Resende, M.: An annotated bibliography of grasp—part I: algorithms. Int. Trans. Oper. Res. 16, 1–24 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fisher, M.: The Lagrangean Relaxation method for solving integer programming problems. Manage. Sci. 27, 1–18 (1981)

    Article  MATH  Google Scholar 

  17. Gaskell, T.: Bases for the vehicle fleet scheduling. Oper. Res. Q. 18, 281–295 (1967)

    Article  Google Scholar 

  18. Gendreau, M., Hertz, A., Laporte, G.: A tabu search heuristic for the Vehicle Routing Problem. Manage. Sci. 40, 1276–1290 (1994)

    Article  MATH  Google Scholar 

  19. Guimarans, D., Herrero, R., Riera, D., Juan, A., Ramos, J.: Combining Constraint Programming, Lagrangian Relaxation and probabilistic algorithms to solve the Vehicle Routing Problem. In: Proceedings of the 17th RCRA International Workshop. Bologna, Italy (2010)

    Google Scholar 

  20. Guimarans, D., Herrero, R., Ramos, J., Padrón, S.: Solving vehicle routing problems using Constraint Programming and Lagrangean Relaxation in a metaheuristics framework. Int. J. Inf. Syst. Supply Chain Manage. 4(2), 61–81 (2011)

    Article  Google Scholar 

  21. Hansen, P., Mladenovic, N.: A tutorial on variable neighborhood search. Tech. Rep. G-2003-46, Groupe d’Études et de Recherche en Analyse des Décisions (GERAD), Montreal, Canada. URL http://www.gerad.ca/fichiers/cahiers/G-2003-46.pdf (2003)

  22. Hasle, G., Kloster, O.: Industrial vehicle routing. In: Hasle, G., Lie, K., Quak, E.: (eds.) Geometric Modelling, Numerical Simulation, and Optimization, pp. 397–435. Springer, Berlin (2007)

    Chapter  Google Scholar 

  23. Held, M., Karp, R.: The travelling salesman problem and minimum spanning trees: part II. Math. Program. 1, 6–25 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  24. Herrero, R., Ramos, J., Guimarans, D.: Lagrangean metaheuristic for the travelling salesman problem. In: Extended Abstracts of Operational Research Conference 52. Royal Holloway, University of London (2010)

  25. Jin Ai, T., Kachitvichyanukul, V.: Particle swarm optimization and two solution representations for solving the capacitated Vehicle Routing Problem. Comput. Ind. Eng. 56, 380–387 (2009)

    Article  Google Scholar 

  26. Juan, A., Faulin, J., Jorba, J., Grasman, S., Barrios, B.: Sr-2: a hybrid intelligent algorithm for the Vehicle Routing Problem. In: Proceedings of the 8th International Conference on Hybrid Intelligent Systems, pp. 78–83. IEEE Computer Society, Barcelona (2008)

    Chapter  Google Scholar 

  27. Juan, A., Faulin, J., Ruiz, R., Barrios, B., Gilibert, M., Vilajosana, X.: Using oriented random search to provide a set of alternative solutions to the capacitated vehicle routing problem. In: Operations Research and Cyber-Infrastructure, pp. 331–346 (2009)

  28. Juan, A., Faulin, J., Jorba, J., Riera, D., Masip, D., Barrios, B.: On the use of Monte Carlo Simulation, cache and splitting techniques to improve the Clarke and Wright savings heuristics. J. Oper. Res. Soc. 62, 1085–1097 (2011)

    Article  Google Scholar 

  29. Juan, A., Faulin, J., Ruiz, R., Barrios, B., Caballe, S.: The SR-GCWS hybrid algorithm for solving the capacitated Vehicle Routing Problem. Appl. Soft Comput. 10(1), 215–224 (2010)

    Article  Google Scholar 

  30. Laporte, G.: What you should know about the vehicle routing problem. Nav. Res. Logist. 54, 811–819 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Law, A.: Simulation Modeling & Analysis. McGraw-Hill, New York (2007)

    Google Scholar 

  32. Lin, S., Lee, Z., Ying, K., Lee, C.: Applying hybrid meta-heuristics for capacitated vehicle routing problem. Expert Syst. Appl. 2(36), 1505–1512 (2009)

    Article  Google Scholar 

  33. Mester, D., Bräysy, O.: Active-guided evolution strategies for the large-scale capacitated Vehicle Routing Problems. Comput. Oper. Res. 34, 2964–2975 (2007)

    Article  MATH  Google Scholar 

  34. Mladenovic, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res. 24(11), 1097–1100 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  35. Nagata, Y.: Edge assembly crossover for the capacitated Vehicle Routing Problem. Lect. Notes Comp. Sci. 4446, 142–153 (2007)

    Article  MathSciNet  Google Scholar 

  36. Prins, C.: A simple and effective evolutionary algorithm for the Vehicle Routing Problem. Comput. Oper. Res. 31, 1985–2002 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  37. Reinelt, G.: The Traveling Salesman: computational solutions for TSP applications. Lecture Notes in Computer Science, vol. 840 (1994)

  38. Resende, M.: Metaheuristic hybridization with Greedy Randomized Adaptive Search Procedures. In: Tutorials in Operations Research, pp. 295–319 (2008)

  39. Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of Constraint Programming. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  40. Rousseau, L., Gendreau, M., Pesant, G.: Using constraint-based operators to solve the Vehicle Routing Problem with time windows. Journal of Heuristics 8, 43–58 (2002)

    Article  MATH  Google Scholar 

  41. Savelsbergh, M.: Local search in routing problems with time windows. Ann. Oper. Res. 4, 285–305 (1985)

    Article  MathSciNet  Google Scholar 

  42. Savelsbergh, M.: Computer Aided Routing. Tech. rep., Centrum voor Wiskunde en Informatica (1988)

  43. Taillard, E.: Parallel iterative search methods for vehicle routing problems. Networks 23, 661–673 (1993)

    Article  MATH  Google Scholar 

  44. Tarantilis, C., Kiranoudis, C.: Boneroute: an adaptative memory-based method for effective fleet management. Ann. Oper. Res. 115, 227–241 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  45. Toth, P., Vigo, D.: The Vehicle Routing Problem. SIAM Monographs on Discrete Mathematics and Applications. SIAM, Philadelphia (2002)

    Google Scholar 

  46. Toth, P., Vigo, D.: The granular tabu search and its application to the vehicle routing problem. INFORMS J. Comput. 15, 333–346 (2003)

    Article  MathSciNet  Google Scholar 

  47. Yurtkuran, A., Emel, E.: A new hybrid electromagnetism-like algorithm for capacitated routing problems. Expert Syst. Appl. 37(4), 3427–3433 (2010). doi:10.1016/j.eswa.2009.10.005

    Article  Google Scholar 

  48. Zachariadis, E., Kiranoudis, C.: A strategy for reducing the computational complexity of local search-based methods for the Vehicle Routing Problem. Comput. Oper. Res. 37, 2089–2105 (2010)

    Article  MATH  Google Scholar 

  49. Zamani, R., Lau, S.: Embedding learning capability in Lagrangean Relaxation: an application to the travelling salesman problem. Eur. J. Oper. Res. 201(1), 82–88 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Guimarans.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guimarans, D., Herrero, R., Riera, D. et al. Combining probabilistic algorithms, Constraint Programming and Lagrangian Relaxation to solve the Vehicle Routing Problem. Ann Math Artif Intell 62, 299–315 (2011). https://doi.org/10.1007/s10472-011-9261-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-011-9261-y

Keywords

Mathematics Subject Classification (2010)

Navigation