Skip to main content
Log in

The algorithmization of counterfactuals

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

Recent advances in causal reasoning have given rise to a computation model that emulates the process by which humans generate, evaluate and distinguish counterfactual sentences. Though compatible with the “possible worlds” account, this model enjoys the advantages of representational economy, algorithmic simplicity and conceptual clarity. Using this model, the paper demonstrates the processing of counterfactual sentences on a classical example due to Ernest Adam. It then gives a panoramic view of several applications where counterfactual reasoning has benefited problem areas in the empirical sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, E.: The Logic of Conditionals. D. Reidel, Dordrecht, Netherlands (1975)

    MATH  Google Scholar 

  2. Arlo-Costa, H.: The logic of conditionals. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. http://plato.stanford.edu/entries/logic-conditionals/ (2007)

  3. Balke, A., Pearl, J.: Counterfactuals and policy analysis in structural models. In: Besnard, P., Hanks, S. (eds.) Uncertainty in Artificial Intelligence 11, pp. 11–18. Morgan Kaufmann, San Francisco (1995)

    Google Scholar 

  4. Baron, R., Kenny, D.: The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. J. Pers. Soc. Psychol. 51, 1173–1182 (1986)

    Article  Google Scholar 

  5. Campbell, D., Stanley, J.: Experimental and Quasi-Experimental Designs for Research. R. McNally and Co., Chicago, IL (1966)

    Google Scholar 

  6. Fine, K.: Review of Lewis’ counterfactuals. Mind 84, 451–458 (1975)

    Article  Google Scholar 

  7. Galles, D., Pearl, J.: An axiomatic characterization of causal counterfactuals. Found. Sci. 3, 151–182 (1998)

    Article  MathSciNet  Google Scholar 

  8. Gardenfors, P.: Causation and the dynamics of belief. In: Harper, W., Skyrms, B. (eds.) Causation in Decision, Belief Change and Statistics II, pp. 85–104. Kluwer Academic Publishers (1988)

  9. Goldszmidt, M., Pearl, J.: Rank-based systems: a simple approach to belief revision, belief update, and reasoning about evidence and actions. In: Nebel, B., Rich, C., Swartout, W. (eds.) Proceedings of the Third International Conference on Knowledge Representation and Reasoning, pp. 661–672. Morgan Kaufmann, San Mateo, CA (1992)

    Google Scholar 

  10. Haavelmo, T.: The statistical implications of a system of simultaneous equations. Econometrica 11, 1–12 (1943) (Reprinted in Hendry, D.F., Morgan, M.S. (eds.) The Foundations of Econometric Analysis, pp. 477–490. Cambridge University Press (1995))

    Google Scholar 

  11. Halpern, J.: Axiomatizing causal reasoning. In: Cooper, G., Moral, S. (eds.) Uncertainty in Artificial Intelligence, pp. 202–210. Morgan Kaufmann, San Francisco, CA (1998) (Also in J. Artif. Intell. Res. 12(3), 17–37 (2000)

    Google Scholar 

  12. Hurwicz, L.: Generalization of the concept of identification. In: Koopmans, T. (ed.) Statistical Inference in Dynamic Economic Models. Cowles Commission, Monograph 10, pp. 245–257. Wiley, New York (1950)

    Google Scholar 

  13. Joyce, J.: The Foundatins of Causal Decision Theory. Cambridge University Press, Cambridge, MA (1999)

    Book  Google Scholar 

  14. Lewis, D.: Counterfactuals and comparative possibility. In: Harper, W.L., Stalnaker, R., Pearce, G. (eds.) Ifs, pp. 57–85. D. Reidel, Dordrecht, 1981 (1973)

    Google Scholar 

  15. Marschak, J.: Economic measurements for policy and prediction. In: Hood, W.C., Koopmans, T. (eds.) Studies in Econometric Method, pp. 1–26. Cowles Commission Monograph 10, Wiley and Sons, Inc. (1953)

  16. Pearl, J.: Causal diagrams for empirical research. Biometrika 82, 669–710 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. Pearl, J.: Causality: Models, Reasoning, and Inference, 2nd edn., 2009. Cambridge University Press, New York. (2000)

    MATH  Google Scholar 

  18. Pearl, J.: Direct and indirect effects. In: Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence, pp. 411–420. Morgan Kaufmann, San Francisco, CA (2001)

    Google Scholar 

  19. Pearl, J.: Causal inference in statistics: An overview. Statistics Surveys 3, 96–146. http://ftp.cs.ucla.edu/pub/stat_ser/r350.pdf (2009a)

  20. Pearl, J.: Causality: Models, Reasoning, and Inference, 2nd edn. Cambridge University Press, New York (2009b)

    MATH  Google Scholar 

  21. Pearl, J.: The mediation formula: a guide to the assessment of causal pathways in nonlinear models. In: Berzuini, C., Dawid, P., Bernardinelli, L. (eds.) Causality: Statistical Perspectives and Applications. Tech. Rep. R-363, Department of Computer Science, University of California, Los Angeles. http://ftp.cs.ucla.edu/pub/stat_ser/r363.pdf (2011, forthcoming)

  22. Pearl, J., Bareinboim, E.: Transportability of causal and statistical relations: a formal approach. In: Proceedings of AAAI-2011. Tech. Rep. R-372, Department of Computer Science, University of California, Los Angeles, CA. http://ftp.cs.ucla.edu/pub/stat_ser/r372-a.pdf (2011, forthcoming)

  23. Petersen, M., Sinisi, S., van der Laan, M.: Estimation of direct causal effects. Epidemiology 17, 276–284 (2006)

    Article  Google Scholar 

  24. Ramsey, F.: General propositions and causality. In: Mellor, H.A. (eds.) Philosophical Papers, pp. 145–153 . Cambridge University Press, Cambridge (1929)

    Google Scholar 

  25. Robins, J., Greenland, S.: Identifiability and exchangeability for direct and indirect effects. Epidemiology 3, 143–155 (1992)

    Article  Google Scholar 

  26. Shpitser, I., Pearl, J.: What counterfactuals can be tested. In: Proceedings of the Twenty-Third Conference on Uncertainty in Artificial Intelligence, pp. 352–359. AUAI Press, Vancouver, BC, Canada (2007) (Also, J. Mach. Learn. Res. 9, 1941–1979 (2008))

    Google Scholar 

  27. Shpitser, I., Pearl, J.: Effects of treatment on the treated: Identification and generalization. In: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence. AUAI Press, Montreal, Quebec (2009)

    Google Scholar 

  28. Simon, H.: Causal ordering and identifiability. In: Hood, W.C., Koopmans, T. (eds.) Studies in Econometric Method, pp. 49–74. Wiley, Inc., New York, NY (1953)

    Google Scholar 

  29. Skyrms, B.: Causal Necessity. Yale University Press, New Haven (1980)

    Google Scholar 

  30. Stalnaker, R.: Letter to David Lewis. In: Harper, W.L., Stalnaker, R., Pearce, G. (eds.) Ifs, pp. 151–152. D. Reidel, Dordrecht, 1981 (1972)

    Google Scholar 

  31. Taylor, C., Dennett, D.: Who’s still afraid of determinism? Rethinking causes and possibilities. In: Kane, R.H. (ed.) The Oxford Handbook of Free Will. Oxford University Press, New York (2011, forthcoming)

    Google Scholar 

  32. Tian, J., Pearl, J.: A general identification condition for causal effects. In: Proceedings of the Eighteenth National Conference on Artificial Intelligence, pp. 567–573. AAAI Press/The MIT Press, Menlo Park, CA (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judea Pearl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pearl, J. The algorithmization of counterfactuals. Ann Math Artif Intell 61, 29–39 (2011). https://doi.org/10.1007/s10472-011-9247-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-011-9247-9

Keywords

Mathematics Subject Classifications (2010)

Navigation