Skip to main content
Log in

Disjunctive databases for representing repairs

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

This paper addresses the problem of representing the set of repairs of a possibly inconsistent database by means of a disjunctive database. Specifically, the class of denial constraints is considered. We show that, given a database and a set of denial constraints, there exists a (unique) disjunctive database, called canonical, which represents the repairs of the database w.r.t. the constraints and is contained in any other disjunctive database with the same set of minimal models. We propose an algorithm for computing the canonical disjunctive database. Finally, we study the size of the canonical disjunctive database in the presence of functional dependencies for both subset-based repairs and cardinality-based repairs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Afrati, F.N., Kolaitis, P.G.: Repair checking in inconsistent databases: algorithms and complexity. In: International Conference on Database Theory (ICDT), pp. 31–41 (2009)

  2. Antova, L., Koch, C., Olteanu, D.: 10\(^{{10}^{6}}\) worlds and beyond: efficient representation and processing of incomplete information. In: International Conference on Data Engineering (ICDE), pp. 606–615 (2007)

  3. Arenas, M., Bertossi, L.E., Chomicki, J.: Consistent query answers in inconsistent databases. In: ACM Symposium on Principles of Database Systems (PODS), pp. 68–79 (1999)

  4. Arenas, M., Bertossi, L.E., Chomicki, J.: Answer sets for consistent query answering in inconsistent databases. Theory Pract. Log. Program 3(4–5), 393–424 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Arieli, O., Denecker, M., Bruynooghe, M.: Distance semantics for database repair. Ann. Math. Artif. Intell. 50(3–4), 389–415 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Benjelloun, O., Sarma, A.D., Halevy, A.Y., Theobald, M., Widom, J.: Databases with uncertainty and lineage. VLDB J. 17(2), 243–264 (2008)

    Article  Google Scholar 

  7. Bertossi, L.E.: Consistent query answering in databases. SIGMOD Rec. 35(2), 68–76 (2006)

    Article  Google Scholar 

  8. Bertossi, L.E., Bravo, L., Franconi, E., Lopatenko, A.: The complexity and approximation of fixing numerical attributes in databases under integrity constraints. Inf. Syst. 33(4–5), 407–434 (2008)

    Article  Google Scholar 

  9. Bertossi, L.E., Chomicki, J.: Query answering in inconsistent databases. In: Logics for Emerging Applications of Databases, pp. 43–83 (2003)

  10. Calì, A., Lembo, D., Rosati, R.: Query rewriting and answering under constraints in data integration systems. In: International Joint Conference on Artificial Intelligence (IJCAI), pp. 16–21 (2003)

  11. Chomicki, J.: Consistent query answering: five easy pieces. In: International Conference on Database Theory (ICDT), pp. 1–17 (2007)

  12. Chomicki, J., Marcinkowski, J.: Minimal-change integrity maintenance using tuple deletions. Inf. Comput. 197(1–2), 90–121 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Fernández, J.A., Minker, J.: Semantics of disjunctive deductive databases. In: International Conference on Database Theory (ICDT), pp. 21–50 (1992)

  14. Greco, G., Greco, S., Zumpano, E.: A logical framework for querying and repairing inconsistent databases. IEEE Trans. Knowl. Data Eng. 15(6), 1389–1408 (2003)

    Article  Google Scholar 

  15. Imielinski, T., Naqvi, S.A., Vadaparty, K.V.: Incomplete objects—a data model for design and planning applications. In: ACM SIGMOD Conference, pp. 288–297 (1991)

  16. Imielinski, T., van der Meyden, R., Vadaparty, K.V.: Complexity tailored design: a new design methodology for databases with incomplete information. J. Comput. Syst. Sci. 51(3), 405–432 (1995)

    Article  Google Scholar 

  17. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The dlv system for knowledge representation and reasoning. ACM Trans. Comput. Logic 7(3), 499–562 (2006)

    Article  MathSciNet  Google Scholar 

  18. Lopatenko, A., Bertossi, L.E.: Complexity of consistent query answering in databases under cardinality-based and incremental repair semantics. In: International Conference on Database Theory (ICDT), pp. 179–193 (2007)

  19. Minker, J.: On indefinite databases and the closed world assumption. In: International Conference on Automated Deduction (CADE), pp. 292–308 (1982)

  20. Minker, J., Seipel, D.: Disjunctive logic programming: a survey and assessment. In: Computational Logic: Logic Programming and Beyond, pp. 472–511 (2002)

  21. Vardi, M.Y.: The complexity of relational query languages (extended abstract). In: ACM Symposium on Theory of Computing (STOC), pp. 137–146 (1982)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristian Molinaro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molinaro, C., Chomicki, J. & Marcinkowski, J. Disjunctive databases for representing repairs. Ann Math Artif Intell 57, 103–124 (2009). https://doi.org/10.1007/s10472-009-9159-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-009-9159-0

Keywords

Mathematics Subject Classifications (2000)

Navigation