Skip to main content
Log in

An efficient analysis of FitzHugh-Nagumo circuit model

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

This article has been updated

Abstract

FitzHugh-Nagumo, FHN, is a most critically significant Neural Cell method which is effectively capable of modeling the synaptic behavior by leveraging van-der-pol oscillators. The FitzHugh-Nagumo model makes use of common circuitry of FHNs, remarkably similar to the very conventional LC oscillators. Conventional LC oscillators, needless to say, have been largely deployed and comprehensively studied for quite some time. Notwithstanding its similarity to other LC oscillators, FitzHugh-Nagumo contains a resistor in series with the circuit that makes it inconsistent with other LC oscillator models. In this paper, a productive circuit technique is used to make FitzHugh-Nagumo circuit analogous to a LC conventional oscillator, which consequently provides the capability of using analytical approaches on these systems. This gives the designer of neural cells the opportunity of taking advantage of the vast knowledge about oscillatory systems. The proposed circuit model has been verified in terms of accuracy and compatibility for free-running, locked, and unlocked states. In addition, a theoretical analysis, aiming to clarify the background principle of the FitzHugh-Nagumo design process, is also provided. The simulation results which are performed using TSMC 180 nm CMOS technology represent a good agreement between theory and simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability statement

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Change history

  • 18 March 2022

    The original online version of this article was revised: The university name in the affiliation of the authors has been corrected from 'Tabriz University' to 'University of Tabriz'.

References

  1. Cosp, J., Binczak, S., Madrenas, J., & Fernandez, D. (2008). Implementation of compact VLSI FitzHugh-Nagumo neurons. 2008 IEEE international symposium on circuits and systems, pp. 2370–2373.https://doi.org/10.1109/ISCAS.2008.4541931

  2. Koickal, T., Hamilton, A., Pearce, T., Tan, S., & Covington, J. (2006). Analog VLSI design of an adaptive neuromorphic chip for olfactory systems. In Proc. IEEE international symposium on circuits and systems (ISCAS' 06), Island of Kos, Greece, pp. 4547–4550.

  3. Zoua, Q., Bornat, Y., Tomas, J., Renaud, S., & Destexhe, A. (2006). Real-time simulations of networks of hodgkinhuxley neurons using analog circuits. Neurocomputing, 69, 1137–1140.

    Article  Google Scholar 

  4. Horio, Y., Taniguchi, T., & Aihara, K. (2005). An asynchronous spiking chaotic neuron integrated circuit. Neurocomputing, 64, 447–472.

    Article  Google Scholar 

  5. Nakada, K., Asai, T., & Hayashi, H. (2006). Analog VLSI implementation of resonate-and-fire neuron. International Journal of Neural System, 16(6), 445456. Show in Context CrossRef Google Scholar

  6. Linares-Barranco, B., Sánchez-Sinencio, E., Rodríguez- Vázquez, A., & Huertas, J. (1991). A CMOS implementation of fitzhugh-nagumo neuron model. IEEE Journal of Solid-State Circuits, 26(7), 956–965.

    Article  Google Scholar 

  7. Keener, J. P. (1983). Analog circuitry for the van der Pol and FitzHugh-Nagumo equations. IEEE Transactions on Systems, Man, and Cybernetics, 13(5), 1010–1014. https://doi.org/10.1109/TSMC.1983.6313098

    Article  MathSciNet  Google Scholar 

  8. Liu, Z., Wang, C., Jin, W., et al. (2019). Capacitor coupling induces synchronization between neural circuits. Nonlinear Dynamics. https://doi.org/10.1007/s11071-019-05155-7

    Article  MATH  Google Scholar 

  9. Yang, K. H., Franaszczuk, P. J., & Bergey, G. K. (2003). The influences of somatic and dendritic inhibition on bursting patterns in a neuronal circuit model. Biological Cybernetics, 89(4), 242–253.

    Article  Google Scholar 

  10. Bao, B. C., Wu, P. Y., Bao, H., et al. (2018). Numerical and experimental confirmations of quasi-periodic behavior and chaotic bursting in third-order autonomous memristive oscillator. Chaos, Solitons & Fractals, 106, 161–170.

    Article  MathSciNet  Google Scholar 

  11. Hu, X., Liu, C., Liu, L., et al. (2016). An electronic implementation for Morris-Lecar neuron model. Nonlinear Dynamics, 84, 2317–2332.

    Article  MathSciNet  Google Scholar 

  12. Ren, G., Xu, Y., & Wang, C. (2017). Synchronization behavior of coupled neuron circuits composed of memristors. Nonlinear Dynamics, 88, 893–901.

    Article  Google Scholar 

  13. Ren, G., Zhou, P., Ma, J., et al. (2017). Dynamical response of electrical activities in digital neuron circuit driven by autapse. International Journal of Bifurcation and Chaos, 27(12), 1750187.

    Article  MathSciNet  Google Scholar 

  14. Hodgkin, A., & Huxley, A. (1952). A quantitative description of membrane current and application to conduction and excitation in nerve. Journal of Physiology, 117, 500–544.

    Article  Google Scholar 

  15. Izhikevich, E. (2006). Dynamical systems in neuroscience. The geometry of excitability and bursting. Cambridge, MA: The MIT Press.

  16. Grassia, F., Lévi, T., Tomas, J., Renaud, S., & Saïghi, S. (2011). A neuromimetic spiking neural network for simulating cortical circuits. 2011 45th annual conference on information sciences and systems, pp. 1–6. https://doi.org/10.1109/CISS.2011.5766098.

  17. Chen, C., Wu, H., & Chen, H. (2012). A conductance-based neuronal network in VLSI for studying the CPR circuit of the crayfish. IEEE International Symposium on Circuits and Systems (ISCAS), 2012, 2051–2054. https://doi.org/10.1109/ISCAS.2012.6271685

    Article  Google Scholar 

  18. Yu, T., Sejnowski, T. J., & Cauwenberghs, G. (2011). Biophysical neural spiking, bursting, and excitability dynamics in reconfigurable analog VLSI. IEEE Transactions on Biomedical Circuits and Systems, 5(5), 420–429. https://doi.org/10.1109/TBCAS.2011.2169794

    Article  Google Scholar 

  19. Russell, A., Mazurek, K., Mihalaş, S., Niebur, E., & Etienne-Cummings, R. (2012). Parameter estimation of a spiking silicon neuron. IEEE Transactions on Biomedical Circuits and Systems, 6(2), 133–141. https://doi.org/10.1109/TBCAS.2011.2182650.PMID:23852978;PMCID:PMC3712290

    Article  Google Scholar 

  20. Larras, B., Lahuec, C., Seguin, F., & Arzel, M. (2016). Ultra-low-energy mixed-signal IC implementing encoded neural networks. IEEE Transactions on Circuits and Systems I: Regular Papers, 63(11), 1974–1985. https://doi.org/10.1109/TCSI.2016.2600663

    Article  Google Scholar 

  21. Irizarry-Valle, Y., & Parker, A. C. (2015). An astrocyte neuromorphic circuit that influences neuronal phase synchrony. IEEE Transactions on Biomedical Circuits and Systems, 9(2), 175–187. https://doi.org/10.1109/TBCAS.2015.2417580

    Article  Google Scholar 

  22. Haghiri, S., Ahmadi, A., & Saif, M. (2017). Complete neuron-astrocyte interaction model: Digital multiplierless design and networking mechanism. IEEE Transactions on Biomedical Circuits and Systems, 11(1), 117–127. https://doi.org/10.1109/TBCAS.2016.2583920

    Article  Google Scholar 

  23. Razavi, B. (2004). A study of injection locking and pulling in oscillators. IEEE Journal of Solid-State Circuits, 39(9), 1415–1424.

    Article  Google Scholar 

  24. Lanka, N. R., Patnaik, S. A., & Harjani, R. A. (2011). Frequency-hopped quadrature frequency synthesizer in 0.13-μm technology. IEEE Journal of Solid-State Circuits, 46(9), 2021–2032. https://doi.org/10.1109/JSSC.2011.2139490.

  25. Mirzaei, A., Heidari, M. E., Bagheri, R., Chehrazi, S., & Abidi, A. A. (2007). The quadrature LC oscillator: A complete portrait based on injection locking. IEEE Journal of Solid-State Circuits, 42(9), 1916–1932.

    Article  Google Scholar 

  26. Ali, I., Biswas, B. N., & Ray, S. (2014). Improved closed form large injection perturbation analytical model on the output spectrum of unlocked driven oscillator—Part I: Phase perturbation. IEEE Transactions on Circuits and Systems I: Regular Papers, 61(1), 106–119.

  27. Tofangdarzade, A., Tofangdarzade, A., & Saniei, N. (2018). Strong injection locking and pulling in LC multiphase oscillators with multiple injection signals. IEEE Transactions on Circuits and Systems II: Express Briefs, 66(8), 1336–1340.

    Google Scholar 

  28. Tofangdarzade, A., & Jalali, A. (2015). An efficient method to analyze lock range in ring oscillators with multiple injections. IEEE Transactions on Circuits and Systems II: Express Briefs, 62(11), 1013–1017.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yosef Khakipoor.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khakipoor, Y., Bahar, H.B. & Karimian, G. An efficient analysis of FitzHugh-Nagumo circuit model. Analog Integr Circ Sig Process 110, 385–393 (2022). https://doi.org/10.1007/s10470-021-01947-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-021-01947-3

Keywords

Navigation