Skip to main content
Log in

An inductor-less CMOS broadband balun gm-boosting LNA exploiting noise cancellation techniques

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a 100 MHz to 6 GHz broadband inductor-less single-to-differential balun gm-boosting low-noise amplifier (LNA) for multi-standard radio applications. Two mechanisms of noise cancellation techniques have been innovatively introduced in this work. To achieve the wideband input matching, high gain, and low noise figure simultaneously, a feed-forward thermal noise cancellation technique has been exploited in the design of the inverting amplifier for transconductance enhancement. Moreover, the balanced balun operation transforms the thermal noise of the common-gate transistor into a common-mode signal, and cancels it at the LNA’s differential outputs. The proposed design has been fabricated in a standard 0.18-um RF CMOS technology and occupies a die area of 0.04 mm2. Measurement results have shown that it has achieved a good performance over the whole operation frequency range of interest (100 MHz to 6 GHz) with a gain of 15.5 dB, IIP3 of 1.5 dBm, minimum NF of 3.0 dB and current dissipation of 8 mA at 1.8 V supply voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.5
Fig.6
Fig.7
Fig.8
Fig.9

Similar content being viewed by others

References

  1. Chen, R., & Hashemi, H. (2014). A 0.5-to-3 GHz software-defined radio receiver using discrete-time RF signal processing. IEEE Journal of Solid-State Circuits,49(5), 1097–1111.

    Article  Google Scholar 

  2. Bagheri, R., et al. (2006). Software-defined radio receiver: Dream to reality. IEEE Communications Magazine,44(8), 111–118.

    Article  Google Scholar 

  3. Abidi, A. A. (2007). The path to the software-defined radio receiver. IEEE Journal of Solid-State Circuits,42(5), 954–966.

    Article  Google Scholar 

  4. Bagheri, R., et al. (2006). An 800-MHz–6-GHz software-defined wireless receiver in 90-nm CMOS. IEEE Journal of Solid-State Circuits,41(12), 2860–2876.

    Article  Google Scholar 

  5. Giannini, V., et al. (2009). A 2-mm2 0.1–5 GHz software-defined radio receiver in 45-nm digital CMOS. IEEE Journal of Solid-State Circuits,44(12), 3486–3498.

    Article  Google Scholar 

  6. Zhang, H., Fan, X., & Sinencio, E. S. (2009). A low-power, linearized, ultra-wideband LNA design technique. IEEE Journal of Solid-State Circuits,44(2), 320–330.

    Article  Google Scholar 

  7. Ponton, D., et al. (2009). Design of ultra-wideband low-noise amplifiers in 45-nm CMOS technology: Comparison between planar bulk and SOI FinFET devices. IEEE Transactions on Circuits and Systems I: Regular Papers,56(5), 920–932.

    Article  MathSciNet  Google Scholar 

  8. Khurram, M., & Hasan, S. M. R. (2012). A 3–5 GHz current-reuse gm-boosted CG LNA for ultrawideband in 130 nm CMOS. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,20(3), 400–409.

    Article  Google Scholar 

  9. Belmas, F., Hameau, F., & Fournier, J. (2012). A low power inductorless LNA with double Gm enhancement in 130 nm CMOS. IEEE Journal of Solid-State Circuits,47(5), 1094–1103.

    Article  Google Scholar 

  10. Bruccoleri, F., Klumperink, E. A. M., & Nauta, B. (2004). Wide-band CMOS low-noise amplifier exploiting thermal noise canceling. IEEE Journal of Solid-State Circuits,39(2), 275–282.

    Article  Google Scholar 

  11. Yu, Y. H., Yang, Y. S., & Chen, Y. J. E. (2010). A compact wideband CMOS low noise amplifier with gain flatness enhancement. IEEE Journal of Solid-State Circuits,45(3), 502–509.

    Article  Google Scholar 

  12. Blaakmeer, S. C., Klumperink, E. A. M., Leenaerts, D. M. W., & Nauta, B. (2008). Wideband balun-LNA with simultaneous output balancing, noise-canceling and distortion-canceling. IEEE Journal of Solid-State Circuits,43(6), 1341–1350.

    Article  Google Scholar 

  13. Lee, H. C., Wang, C. S., & Wang, C. K. (2012). A 0.2–2.6 GHz wideband noise-reduction gm-boosted LNA. IEEE Microwave and Wireless Components Letters,22(5), 269–271.

    Article  Google Scholar 

  14. Liu, J. Y., Chen, J., Hsia, C., Yin, P., & Lu, C. (2014). A wideband inductorless single-to-differential LNA in 0.18um CMOS technology for digital TV receivers. IEEE Microwave and Wireless Components Letters,24(7), 472–474.

    Article  Google Scholar 

  15. Yu, H., Chen, Y., Boon, C. C., Li, C., Mak, P., & Martins, R. P. (2019). A 0.044-mm2 0.5-to-7-GHz resistor-plus-source-follower-feedback noise-cancelling LNA achieving a flat NF of 3.3±0.45 dB. IEEE Transactions on Circuits and Systems II: Express Briefs,66(1), 71–75.

    Article  Google Scholar 

  16. Weng, R., Liu, C., & Lin, P. (2010). A low-power full-band low-noise amplifier for ultra-wideband receivers. IEEE Transactions on Microwave Theory and Techniques,58(8), 2077–2083.

    Article  Google Scholar 

  17. Wang, H., Zhang, L., & Yu, Z. (2010). A wideband inductorless LNA with local feedback and noise cancelling for low-power low-voltage applications. IEEE Transactions on Circuits and Systems I: Regular Papers,57(8), 1993–2005.

    Article  MathSciNet  Google Scholar 

  18. Lee, H., Chung, T., Seo, H., Choi, I., & Kim, B. (2015). A wideband differential low-noise-amplifier with IM3 harmonics and noise canceling. IEEE Microwave and Wireless Components Letters,25(1), 46–48.

    Article  Google Scholar 

  19. Kumar, A. R. A., Sahoo, B. D., & Dutta, A. (2018). A wideband 2–5 GHz noise canceling subthreshold low noise amplifier. IEEE Transactions on Circuits and Systems II: Express Briefs,65(7), 834–838.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqun Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, T., Li, Z. & Tian, M. An inductor-less CMOS broadband balun gm-boosting LNA exploiting noise cancellation techniques. Analog Integr Circ Sig Process 104, 121–129 (2020). https://doi.org/10.1007/s10470-020-01665-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-020-01665-2

Keywords

Navigation