Skip to main content
Log in

Design and analysis of serpentine meander asymmetric cantilever RF-MEMS shunt capacitive switch

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, the design of asymmetric cantilever radio frequency micro electromechanical system (RF-MEMS) capacitive shunt switch is presented. The analysis and design have considered for single meander, uniform serpentine and non-uniform serpentine asymmetric cantilever RF-MEMS capacitive shunt switches were proposed. The non-uniform serpentine meander cantilever structure shows better performance compared to other structures. The actuation voltage attained for the serpentine meander cantilever is 1.1 V, 3.2 V with the spring constants 0.03 N m, 0.32 N m for the left and right cantilevers respectively. The proposed model isolations observed in-off states at left, right and both side cantilevers are − 52 dB, − 61 dB, − 45 dB at frequency of 7 GHz, 11.1 GHz, 12 GHz respectively. The proposed device insertion loss is − 0.2 dB and return loss is − 44 dB over 12 GHz is observed at on-state of the proposed model. The performance parameters are also observed for spring constant, pull in voltage, quality factor, stress analysis, switching time, resistance, inductance, capacitance, stiction loss and variation of gap with respect to spring constants and actuation voltages are calculated and analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Ashish, S. K., & Gupta, N. (2013). Microelectromechanical system (MEMS) switches for radio frequency applications—a review. Sensors & Transducers,148(1), 11.

    Google Scholar 

  2. Bansal, D., Kumar, A., Sharma, A., & Rangra, K. J. (2015). Design of compact and wide bandwidth SPDT with anti-stiction torsional RF MEMS series capacitive switch. Microsystem Technologies,21(5), 1047–1052.

    Article  Google Scholar 

  3. Barbato, M., & Meneghesso, G. (2015). A novel technique to alleviate the stiction phenomenon in radio frequency microelectromechanical switches. IEEE Electron Device Letters,36(2), 177–179.

    Article  Google Scholar 

  4. Bendali, A., Labedan, R., Domingue, F., & Nerguizian, V. (2006). Holes effects on RF MEMS parallel membranes capacitors. In 2006 Canadian conference on electrical and computer engineering (pp. 2140–2143). IEEE.

  5. Chowdhury, S., Ahmadi, M., & Miller, W. C. (2005). Pull-in voltage calculations for MEMS sensors with cantilevered beams. In The 3rd international IEEE-NEWCAS conference, 2005 (pp. 143–146). IEEE.

  6. Garg, A., Chawla, P., & Khanna, R. (2013). A novel approach of RF MEMS resistive series switch for reconfigurable antenna. In 2013 annual international conference on emerging research areas and 2013 international conference on microelectronics, communications and renewable energy (pp. 1–6). IEEE.

  7. Giridhar, M. S., Jambhalikar, A., John, J., Islam, R., Nagendra, C. L., & Alex, T. K. (2009). An X band RF MEMS switch based on silicon-on-glass architecture. Sadhana,34(4), 625.

    Article  Google Scholar 

  8. Guha, K., Kumar, M., Parmar, A., & Baishya, S. (2016). Performance analysis of RF MEMS capacitive switch with non-uniform meandering technique. Microsystem Technologies,22(11), 2633–2640.

    Article  Google Scholar 

  9. Lee, H. C., Park, J. H., & Park, Y. H. (2007). Development of shunt type ohmic RF MEMS switches actuated by piezoelectric cantilever. Sensors and Actuators, A: Physical,136(1), 282–290.

    Article  Google Scholar 

  10. Mita, Y., Sakamoto, N., Usami, N., Frappé, A., Higo, A., Stefanelli, B., et al. (2018). Microscale ultrahigh-frequency resonant wireless powering for capacitive and resistive MEMS actuators. Sensors and Actuators, A: Physical,275, 75–87.

    Article  Google Scholar 

  11. Pelliccia, L., Cacciamani, F., Farinelli, P., & Sorrentino, R. (2015). High- Q tunable waveguide filters using ohmic RF MEMS switches. IEEE Transactions on Microwave Theory and Techniques,63(10), 3381–3390.

    Article  Google Scholar 

  12. Pertin, O. (2018). Pull-in-voltage and RF analysis of MEMS based high performance capacitive shunt switch. Microelectronics Journal,77, 5–15.

    Article  Google Scholar 

  13. Rangra, K., & Angira, M. (2015). A low insertion loss, multi-band, fixed central capacitor based RF-MEMS switch. Microsystem Technologies,21(10), 2259–2264.

    Article  Google Scholar 

  14. Rebeiz, G. M., & Muldavin, J. B. (2001). RF MEMS switches and switch circuits. IEEE Microwave Magazine,2(4), 59–71.

    Article  Google Scholar 

  15. Rizk, J., Tan, G. L., Muldavin, J. B., & Rebeiz, G. M. (2001). High-isolation W-band MEMS switches. IEEE Microwave and Wireless Components Letters,11(1), 10–12.

    Article  Google Scholar 

  16. Savin, E. A., Chadin, K. A., & Kirtaev, R. V. (2018). Design and manufacturing of X-band RF MEMS switches. Microsystem Technologies,24(6), 2783–2788.

    Article  Google Scholar 

  17. Sedaghat-Pisheh, H., & Rebeiz, G. M. (2010). Variable spring constant, high contact force RF MEMS switch. In 2010 IEEE MTT-S international microwave symposium. IEEE.

  18. Singh, T., & Khaira, N. (2014). High isolation single-pole four-throw RF MEMS switch based on series-shunt configuration. The Scientific World Journal,2014, 605894.

    Google Scholar 

  19. Won Jung, C., Lee, M. J., Li, G. P., & De Flaviis, F. (2006). Reconfigurable scan-beam single-arm spiral antenna integrated with RF-MEMS switches. IEEE Transactions on Antennas and Propagation,54(2), 455–463.

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Science and Engineering Research Board (SERB), DST, New Delhi, India, Grant No. EEQ/2016/000754.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ketavath Kumar Naik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sailaja, B.V.S., Naik, K.K. Design and analysis of serpentine meander asymmetric cantilever RF-MEMS shunt capacitive switch. Analog Integr Circ Sig Process 102, 593–603 (2020). https://doi.org/10.1007/s10470-020-01606-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-020-01606-z

Keywords

Navigation