Skip to main content
Log in

A novel modified U-shaped microstrip antenna for super wide band (SWB) applications

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In this work, a novel wideband microstrip modified slotted U-shaped printed monopole antenna operating from 3 to 20 GHz for super-wideband applications is proposed. To have an effect on the enhancement of bandwidth and to get better impedance matching over the frequency band, three modifications are introduced, the first one is to print two symmetric triangular shaped slots in the radiating element and the second one is to modify the partial rectangular ground plane to be defected ground plane by slotting three triangular structures. The third modification is to embed a circular slot in the center of the patch for integrating the entire FCC band (3.1–10.6 GHz) in the super wide band antenna. Both CST Microwave Studio and Ansoft HFSS 3-D EM solver were used for the simulation analysis of antennas while measurements after fabrication are performed by applying ZVB 20—vector network analyzer 20 MHz–20 GHz. The average maximum gain of the antenna is 5.72 dB with good radiation patterns. The antennas have only been measured up to 20 GHz (the upper frequency limit of the laboratory vector network analyzer device), simulations results both in CST and HFSS shows satisfactory design’s performance up to 40 GHz. So as this antenna is a candidate to fulfils the future UWB spectrum requirements in a very wide band. A good agreement between the measured and simulated results is achieved in term of return loss in the measured band (up to 20 GHz).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Federal Communications Commission. (2002). Revision of part 15 of the commissions rules regarding ultra‐wide‐band transmission systems first report and order FCC 02. V48, Washington. DC, Technical Report

  2. Vendik, I. B., Rusakov, A., Kanjanasit, K., Hong, J., & Filonov, D. (2017). Ultra-wideband (UWB) planar antenna with single-, dual-, and triple-band notched characteristic based on electric ring resonator. IEEE Antennas and Wireless Propagation Letters,16, 1597–1600.

    Article  Google Scholar 

  3. Ebadzadeh, S. R., & Zehforoosh, Y. (2017). A compact UWB monopole antenna with rejected WLAN band using split-ring resonator and assessed by analytic hierarchy process method. Journal of Microwaves, Optoelectronics and Electromagnetic Applications,16(2), 592–601.

    Article  Google Scholar 

  4. Liang, X. L., & Denidni, T. A. (2008). H-shaped dielectric resonator antenna for wideband applications. IEEE Antennas Wireless Propagation Letters,7, 163–166.

    Article  Google Scholar 

  5. Denidni, T. A., Rao, Q., & Sebak, A. R. (2005). Broadband L-shaped dielectric resonator antenna. IEEE Antennas and Wireless Propagation Letters,4, 453–454.

    Article  Google Scholar 

  6. Mandal, T., & Das, S. (2013). Microstrip feed spanner shape monopole antennas for ultra wide band applications. Journal of Microwaves, Optoelectronics and Electromagnetic Applications,12(1), 15–22.

    Article  Google Scholar 

  7. Nikolaou, S., & Abbasi, M. A. B. (2017). Design and development of a compact UWB monopole antenna with easily-controllable return loss. IEEE Transactions on Antennas and Propagation,65(4), 2063–2067.

    Article  MathSciNet  Google Scholar 

  8. Li, L., Zhang, Y., Wang, J., Zhao, W., Liu, S., & Xu, R. (2014). Bandwidth and gain enhancement of patch antenna with stacked parasitic strips based on LTCC technology. International Journal of Antennas and Propagation, Article ID 461423.

  9. Mazloum, J., Parchin, N. O., & Ojaroudi, S. (2017). Bandwidth enhancement of small slot antenna with a variable band-stop function. Wireless Personal Communications,95(2), 1147–1158.

    Article  Google Scholar 

  10. Kumari, B., & Gupta, N. (2018). UWB active antenna using dielectric resonator. Microwave and Optical Technology Letters,60(8), 1894–1898.

    Article  Google Scholar 

  11. Khalily, M., Rahim, M. K. A., Kishk, A. A., & Danesh, S. (2013). Wideband P-shaped dielectric resonator antenna. Radioengineering,22(1), 281–285.

    Google Scholar 

  12. Fallahi, H., & Atlasbaf, Z. (2015). Bandwidth enhancement of a CPW-fed monopole antenna with small fractal elements. AEU - International Journal of Electronics and Communications,69, 590–595.

    Article  Google Scholar 

  13. Sawant, K. K., & Kumar, C. S. (2015). CPW fed hexagonal micro strip fractal antenna for UWB wireless communications. AEU-International Journal of Electronics and Communications,69(1), 31–38.

    Article  Google Scholar 

  14. Gautam, A. K., Chandel, R., & Kr Kanaujia, B. (2013). A CPW-fed hexagonal-shape monopole-like UWB antenna. Microwave and Optical Technology Letters,55(11), 2582–2587.

    Article  Google Scholar 

  15. Ahmed, B. T., Olivares, P. S., Campos, J. L. M., & Vázquez, F. M. (2018). (3.1-20) GHz MIMO Antennas. International Journal of Electronics and Communications,94, 348–358.

    Article  Google Scholar 

  16. Huang, H. F., & Xiao, S. G. (2017). A compact polarization diversity UWB MIMO antenna with a fork-shaped decoupling structure. Progress In Electromagnetics Research Letters,69, 87–92.

    Article  Google Scholar 

  17. Jangid, K. G., Jain, P. K., Sharma, B. R., Saxena, V. K., Kulhar, V. S., & Bhatnagar, D. (2017). Ring slotted circularly polarized U-shaped printed monopole antenna for various wireless applications. Advanced Electromagnetics,6(1), 70–76.

    Article  Google Scholar 

  18. Mythili, P., & Das, A. (1998). Simple approach to determine resonant frequencies of microstrip antennas. IEE Proceedings-Microwaves, Antennas and Propagation,145(2), 159–162.

    Article  Google Scholar 

  19. Ray, K. P., & Kumar, G. (1999). Determination of the resonant frequency of microstrip antennas. Microwave and Optical Technology Letters,23(2), 114–117.

    Article  Google Scholar 

  20. Hong, J. S., & Karyamapudi, B. M. (2005). A general circuit model for defected ground structures in planar transmission lines. IEEE Microwave and Wireless Components Letters,15(10), 706–708.

    Article  Google Scholar 

  21. Singhal, S. (2017). Asymmetrically fed octagonal Sierpinski band-notched super-wideband antenna. Journal of Computational Electronics,16(1), 210–219.

    Article  Google Scholar 

  22. Khandelwal, M. K., Kanaujia, B. K., & Kumar, S. (2017). Defected ground structure: Fundamentals, analysis, and applications in modern wireless trends. International Journal of Antennas and Propagation, 2017, 2018527. https://doi.org/10.1155/2017/2018527.

    Article  Google Scholar 

  23. Taher, H. (2012). A simplified equivalent circuit model for defected ground structures in planar transmission lines. Progress In Electromagnetics Research Letters,29, 157–166.

    Article  Google Scholar 

  24. Singhal, S., & Singh, A. K. (2017). Asymmetrically CPW-fed ladder-shaped fractal antenna for UWB applications. Analog Integrated Circuits and Signal Processing,92(1), 91–101. https://doi.org/10.1007/s10470-017-0976-5.

    Article  Google Scholar 

  25. Li, X., Xu, Y., Wang, H., Zhang, Y., & Lv, G. (2018). Low cross-polarization antipodal tapered slot antenna with gain bandwidth enhancement for UWB application. Journal of Computational Electronics,17(1), 442–451.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank team of the Laboratory of Information System and Telecommunications, Abdelmalek Essaâdi University for their support to carry out the measurement of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mourad Elhabchi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elhabchi, M., Srifi, M.N. & Touahni, R. A novel modified U-shaped microstrip antenna for super wide band (SWB) applications. Analog Integr Circ Sig Process 102, 571–578 (2020). https://doi.org/10.1007/s10470-020-01589-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-020-01589-x

Keywords

Navigation