Skip to main content
Log in

Design and implementation of a 94 GHz CMOS down-conversion mixer with integrated miniature planar baluns for image radar sensors

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

A 94 GHz down-conversion mixer for image radar sensors using standard 90 nm CMOS technology is reported. The down-conversion mixer comprises a double-balanced Gilbert cell with peaking inductors between RF transconductance stage and LO switching transistors for conversion gain (CG) enhancement and noise figure suppression, a miniature planar balun for converting the single RF input signals to differential signals, another miniature planar balun for converting the single LO input signals to differential signals, and an IF amplifier. The mixer consumes 22.5 mW and achieves excellent RF-port input reflection coefficient of −10 to −35.9 dB for frequencies of 87.6–104.4 GHz, and LO-port input reflection coefficient of −10 to −31.9 dB for frequencies of 88.2–110 GHz. In addition, the mixer achieves CG of 4.9–7.9 dB for frequencies of 81.8–105.8 GHz (the corresponding 3-dB CG bandwidth is 24 GHz) and LO–RF isolation of 37.7–47.5 dB for frequencies of 80–110 GHz, one of the best CG and LO–RF isolation results ever reported for a down-conversion mixer with operation frequency around 94 GHz. Furthermore, the mixer achieves an excellent input third-order intercept point of −3 dBm at 94 GHz. These results demonstrate the proposed down-conversion mixer architecture is promising for 94 GHz image radar sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hwang, Y. J., Wang, H., & Chu, T. H. (2004). A W-band subharmonically pumped monolithic GaAas-based HEMT gate mixer. IEEE Microwave and Wireless Components Letters, 14(7), 313–315.

    Article  Google Scholar 

  2. Jain, V., Tzeng, F., Zhou, L., & Heydari, P. (2009). A single-chip dual-band 22–29-GHz/77–81-GHz BiCMOS transceiver for automotive radars. IEEE Journal of Solid-State Circuits, 44(12), 3469–3485.

    Article  Google Scholar 

  3. Chen, A. Y. K., Baeyens, Y., Chen, Y. K., & Lin, J. (2010). A low-power linear SiGe BiCMOS low-noise amplifier for millimeter-wave active imaging. IEEE Microwave and Wireless Components Letters, 20(2), 103–105.

    Article  Google Scholar 

  4. Lin, Y. S., Wen, W. C., & Wang, C. C. (2014). 13.6 mW 79 GHz CMOS up-conversion mixer with 2.1 dB gain and 35.9 dB LO–RF isolation. IEEE Microwave and Wireless Components Letters, 24(1), 495–497.

    Google Scholar 

  5. Zhang, N., Xu, H., Wu, H. T., & Kenneth, K. O. (2009). W-band active down-conversion mixer in bulk CMOS. IEEE Microwave and Wireless Components Letters, 19(2), 98–100.

    Article  Google Scholar 

  6. Wu, Y. C., Lin, S. K., Chiong, C. C., Tsai, Z. M., & Wang, H. (2011). A W-band image reject mixer for astronomical observation system. In IEEE MTT-S international microwave symposium (pp. 1–4).

  7. Zhao, W., Zhang, Y., & Zhan, M. Z. (2010). Design and performance of a W-band microstrip rat-race balanced mixer. In International conference on microwave and millimeter wave technology (pp. 713–716).

  8. Lee, S. J., Baek, T. J., Han, M., Choi, S. G., Ko, D. S., & Rhee, J. K. (2012). 94 GHz MMIC single-balanced mixer for FMCW radar sensor application. In Global symposium on millimeter waves (pp. 351–354).

  9. Wang, T., Chen, H. C., Chiu, H. W., Lin, Y. S., Huang, G. W., & Lu, S. S. (2006). Micromachined CMOS LNA and VCO by CMOS compatible ICP deep trench technology. IEEE Transactions on Microwave Theory and Techniques, 54(2), 580–588.

    Article  Google Scholar 

  10. Chang, J. F., & Lin, Y. S. (2011). A high-performance distributed amplifier using multiple noise suppression techniques. IEEE Microwave and Wireless Components Letters, 21(9), 495–497.

    Article  Google Scholar 

  11. Chiu, H. W., Lu, S. S., & Lin, Y. S. (2005). A 2.17 dB NF, 5 GHz band monolithic CMOS LNA with 10 mW DC power consumption on a thin (20 μm) substrate. IEEE Transactions on Microwave Theory and Techniques, 53(3), 813–824.

    Article  Google Scholar 

  12. Yeh, P. C., Liu, W. C., & Chiou, H. K. (2005). Compact 28-GHz subharmonically pumped resistive mixer MMIC using a lumped-element high-pass/band-pass balun. IEEE Microwave and Wireless Components Letters, 15(2), 62–64.

    Article  Google Scholar 

  13. El-Gharniti, O., Kerhervé, E., & Bégueret, J. B. (2007). Modeling and characterization of on-chip transformers for silicon RFIC. IEEE Transactions on Microwave Theory and Techniques, 55(4), 607–615.

    Article  Google Scholar 

  14. Long, J. R. (2000). Monolithic transformers for silicon RFIC design. IEEE Journal Solid-State Circuits, 35(9), 1368–1382.

    Article  Google Scholar 

  15. Lin, Y. S., Chen, C. Z., Liang, H. B., & Lu, S. S. (2007). High-performance on-chip transformers with partial polysilicon patterned ground shields (PGS). IEEE Transactions on Electron Devices, 54(1), 157–160.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Ministry of Science and Technology (MOST) of the ROC under Contract MOST103-2221-E-260-027-MY3. The authors are very grateful for the support from CIC, Taiwan, for chip fabrication, and NDL, Taiwan, for RF measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yo-Sheng Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, YS., Lan, KS., Wang, CC. et al. Design and implementation of a 94 GHz CMOS down-conversion mixer with integrated miniature planar baluns for image radar sensors. Analog Integr Circ Sig Process 91, 353–365 (2017). https://doi.org/10.1007/s10470-017-0966-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-017-0966-7

Keywords

Navigation