Skip to main content

Advertisement

Log in

Evolutionary based simplified symbolic PSRR analysis of analog integrated circuits

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

Parasitic interactions through the power supply lines put major limitations on the performance of analog amplifiers, especially in the mixed analog–digital integrated circuits. In this paper, a general method is presented for the symbolic analysis of power-supply rejection ratio (PSRR) in CMOS analog operational amplifiers. Since the complexity of the symbolic expressions grows exponentially with the circuit size, it is necessary to utilize simplification techniques for the analysis of practical circuits. We introduce an evolutionary criterion based on genetic algorithm for the efficient simplification of symbolic PSRR expressions. In contrast to the classical simplification criteria which simplify the different polynomials separately, the main advantage of the proposed criterion is to consider the correlation between different polynomials and different symbolic terms. The proposed methodology guarantees the accuracy of the simplified PSRR expressions in contrast to the exact ones, with a predictable error rate. Comparison of the numerical results extracted from the simplified symbolic PSRR expressions with HSPICE over two analog amplifiers demonstrates the efficiency of the proposed methodology. Simulations also show that the proposed evolutionary-based simplification technique outperforms the existing simplification criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Gielen, G., & Sansen, W. (1993). Modeling of the power-supply interactions of CMOS operational amplifiers using symbolic computation. In IEEE International Symposium on Circuits and Systems (pp. 1381–1384).

  2. Steyaert, M., & Sansen, W. (1990). Power supply rejection ratio in operational transconductance amplifiers. IEEE Transactions on Circuits and Systems, 37(9), 1077–1084.

    Article  Google Scholar 

  3. Fernandez, F., Vazquez, A. R., Huertas, J., & Gielen, G. (1998). Symbolic analysis techniques: Applications to analog design automation. Piscataway: IEEE Press.

    Book  Google Scholar 

  4. Shi, G. (2013). A survey on binary decision diagram approaches to symbolic analysis of analog integrated circuits. Analog Integrated Circuits and Signal Processing, 74(2), 331–343.

    Article  Google Scholar 

  5. Shokouhifar, M., & Jalali, A. (2015). Automatic simplified symbolic analysis of analog circuits using modified nodal analysis and genetic algorithm. Journal of Circuits, Systems and Computers, 24(4), 1–20.

    Article  Google Scholar 

  6. Shokouhifar, M., & Jalali, A. (2015). An evolutionary-based methodology for symbolic simplification of analog circuits using genetic algorithm and simulated annealing. Expert Systems with Applications, 42(3), 1189–1201.

    Article  Google Scholar 

  7. Daems, W., Gielen, G., & Sansen, W. (2002). Circuit simplification for the symbolic analysis of analog integrated circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 21(4), 395–407.

    Article  Google Scholar 

  8. Gielen, G., Wambacq, P., & Sansen, W. M. (1994). Symbolic analysis methods and applications for analog circuits: A tutorial overview. Proceedings of the IEEE, 82(2), 287–304.

    Article  Google Scholar 

  9. Tan, S. X. D. (2006). Symbolic analysis of analog circuits by boolean logic operations. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 53(11), 1313–1317.

    Article  Google Scholar 

  10. Fakhfakh, M., Cuautle, E. T., & Fernandez, F. V. (2012). Design of analog circuits through symbolic analysis. Sharjah: Bentham Science Publishers.

    Book  Google Scholar 

  11. Gielen, G., Walscharts, H., & Sansen, W. (1989). ISAAC: A symbolic simulator for analog integrated circuits. IEEE Journal of Solid-State Circuits, 24(6), 1587–1597.

    Article  Google Scholar 

  12. Seda, S., Degrauwe, M., & Fichtner, W. (1992). Lazy-expansion symbolic expression approximation in SYNAP. In International Conference on Computer-Aided Design (pp. 310–317).

  13. Wierzba G., et al. (1989). SSPICE-A symbolic SPICE program for linear active circuits. In Midwest Symposium on Circuits and Systems (pp. 1197–1201).

  14. Fernandez, F., Vazquez, A. R., & Huertas, J. (1991). Interactive AC modeling and characterization of analog circuits via symbolic analysis. Kluwer Journal on Analog Integrated Circuits and Signal Processing, 1, 183–208.

    Google Scholar 

  15. Sommer, R., Hennig, E., Droge, G., et al. (1993). Equation-based symbolic approximation by matrix reduction with quantitative error prediction. Alta Frequenza, 5(6), 317–325.

    Google Scholar 

  16. Hsu, J., & Sechen, C. (1994). DC small signal symbolic analysis of large analog integrated circuits. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 41(12), 817–828.

    MATH  Google Scholar 

  17. Wambacq, P., Fernandez, F., Gielen, G., Sansen, W., & Vazquez, A. R. (1995). Efficient symbolic computation of approximated small-signal characteristics. IEEE Journal of Solid-State Circuits, 30(3), 327–330.

    Article  Google Scholar 

  18. Yu, Q., & Sechen, C., (1996). A unified approach to the approximate symbolic analysis of large analog integrated circuits. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 43(8), 656–669.

    Article  Google Scholar 

  19. Halonen, K., & Sansen, W. (1987). Effect of current spikes in power supply rails on PSRR performance of switched-capacitor filters. In Proceedings of ISCAS-87, Portland, OR, USA.

  20. Allen, P., & Holberg, D. (1987). CMOS analog circuit design. Holt: Rineholt and Winston Publishing.

    Google Scholar 

  21. Toumazou, C., Moschytz, G. S., & Gilbert, B. (2004). Trade-offs in analog circuit design: the designer’s companion. New York: Kluwer Academic Publishers.

    Google Scholar 

  22. Shi, G. (2013). Graph-pair decision diagram construction for topological symbolic circuit analysis. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 32(2), 275–288.

    Article  Google Scholar 

  23. Liberatore, A., Luchetta, A., Manetti, S. & Piccirilli, M. C. (1995). A new symbolic program package for the interactive design of analog circuits. In IEEE International Symposium on Circuits and Systems (pp. 2209–2212).

  24. Shokouhifar, M., & Jalali, A. (2014). Automatic symbolic simplification of analog circuits in MATLAB using ant colony optimization. In 22nd Iranian Conference on Electrical Engineering (pp. 1–6).

  25. Ho, C. W., Ruehli, A. E., & Brennan, P. A. (1975). The modified nodal approach to network analysis. IEEE Transactions on Circuits and Systems, 22(6), 504–509.

    Article  Google Scholar 

  26. Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor: University of Michigan press.

    Google Scholar 

  27. Shokouhifar, M., & Jalali, A. (2015). A new evolutionary based application specific routing protocol for clustered wireless sensor networks. AEU-International Journal of Electronics and Communications, 69(1), 432–441.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Shokouhifar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shokouhifar, M., Jalali, A. Evolutionary based simplified symbolic PSRR analysis of analog integrated circuits. Analog Integr Circ Sig Process 86, 189–205 (2016). https://doi.org/10.1007/s10470-015-0680-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-015-0680-2

Keywords

Navigation