Skip to main content
Log in

Design of a 12.8 ENOB, 1 kS/s pipelined SAR ADC in 0.35-μm CMOS

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a 15-bit, two-stage pipelined successive approximation register analog-to-digital converter (ADC) suitable for low-power, cost-effective sensor readout circuits. The use of aggressive gain reduction in the residue amplifier combined with a suitable capacitive array DAC topology in the second stage simplifies the design of the operational transconductance amplifier while eliminating excessive capacitive load and consequent power consumption. An elaborate power consumption analysis of the entire ADC was performed to determine the number of bits in each stage of the pipeline. Choice of a segmented capacitive array DAC and attenuation capacitor-based DAC for the first and second stages respectively enable significant reduction in power consumption and area. Fabricated in a low-cost 0.35-μm CMOS process, the prototype ADC achieves a peak SNDR of 78.9 dB corresponding to an effective number of bits (ENOB) of 12.8 bits at a sampling frequency of 1 kS/s and provides an FoM of 157.6 dB. Without any form of calibration, the ADC maintains an ENOB >12.1 bits upto the Nyquist bandwidth of 500 Hz while consuming 6.7 μW. Core area of the ADC is 0.679 mm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Harpe, P., Cantatore, E., & van Roermund, A. (2014). An oversampled 12/14b SAR ADC with noise reduction and linearity enhancements achieving up to 79.1 dB SNDR. ISSCC Digest of Technical Papers (pp. 194–195).

  2. Zhang, D., Bhide, A., & Alvandpour, A. (2012). A 53-nW 9.1-ENOB 1-kS/s SAR ADC in 0.13-μm CMOS for medical implant devices. IEEE Jounal of Solid-State Circuits, 47(7), 1585–1593.

    Article  Google Scholar 

  3. Liu, W., Huang, P., & Chiu, Y. (2010). A 12b 22.5/45MS/s 3.0 mW 0.059 \({\rm mm}^2\) CMOS SAR ADC achieving over 90 dB SFDR. ISSCC Digest of Technical Papers (pp. 380–381).

  4. Morie, T., Miki, T., Matsukawa, K., Bando, Y., Okumoto, T., Obata, K., et al. (2013). A 71 dB-SNDR 50 MS/s 4.2 mW CMOS SAR ADC by SNR enhancement techniques utilizing noise. ISSCC Digest of Technical Papers (pp. 272–273).

  5. Kapusta, R., Shen, J., Decker, S., Li, H., & Ibaragi, E. (2013). A 14b 80 MS/s SAR ADC with 73.6 dB SNDR in 65 nm CMOS. ISSCC Digest of Technical Papers (pp. 472–473).

  6. Lee, C., & Flynn, M. (2011). A SAR-assisted two-stage pipeline ADC. IEEE Journal of Solid-State Circuits, 46(4), 859–869.

    Article  Google Scholar 

  7. Lee, H.-Y., Lee, B., & Moon, U. K. (2012). A 31.3fJ/conversion-step 70.4 dB SNDR 30 MS/s 1.2 V two-step pipelined ADC in 0.13 μm CMOS. ISSCC Digest of Technical Papers (pp. 474–476).

  8. Li, J., & Maloberti, F. (2002). Pipeline of successive approximation converters with optimum power merit factor. In Proceedings of international conference on electronics, circuits and system (ICECS) (pp. 17–20).

  9. Lewis, S. H. (1992). Optimizing the stage resolution in pipelined, multistage, analog-to-digital converters for video-rate applications. IEEE Transactions on Circuits and Systems-II, 39(8), 516–523.

    Article  Google Scholar 

  10. Yang, W., Kelly, D., Mehr, I., Sayuk, M., & Singer, L. (2001). A 3-V 340-mW 14-b 75-M sample/s CMOS ADC with 85-dB SFDR at Nyquist input. IEEE Journal of Solid-State Circuits, 36(12), 1931–1936.

    Article  Google Scholar 

  11. Wakimoto, T., Li, H., & Murase, K. (2011). Statistical analysis on the effect of capacitance mismatch in a high-resolution successive-approximation ADC. IEEE Transactions on Electrical and Electronic Engineering, 6(S1), S89–S93.

    Article  Google Scholar 

  12. Zhang, D., Svensson, C., & Alvandpour, A. (2011). Power consumption bounds for SAR ADCs. In Proceedings of European conference on circuit theory and design (ECCTD) (pp. 556–559).

  13. Zhang, D. (2014). Ultra-low-power analog-to-digital converters for medical applications. Ph.D. dissertation, Linköping University, Sweden, pp. 11–16.

  14. Zhang, D., & Alvandpour, A. (2012). A 3-nW 9.1-ENOB SAR ADC at 0.7 V and 1 kS/s. In Proceedings of IEEE European Solid-State Circuits Conference (ESSCIRC) (pp. 369–372).

  15. Saberi, M., & Lotfi, R. (2014). Segmented architecture for successive approximation analog-to-digital converters. IEEE Transaction on VLSI System, 22(3), 593–606.

  16. Saberi, M., Lotfi, R., Mafinezhad, K., & Serdijn, W. (2011). Analysis of power consumption and linearity in capacitive digital-to-analog converters used in successive approximation ADCs. IEEE Transactions on Circuits System I, 58(8), 1736–1748.

    Article  MathSciNet  Google Scholar 

  17. Sundstrom, T., Murmann, B., & Svensson, C. (2009). Power dissipation bounds for high-speed Nyquist analog-to-digital converters. IEEE Transactions on Circuits System I, 56(3), 509–518.

    Article  MathSciNet  Google Scholar 

  18. Abo, A., & Gray, P. (1999). A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter. IEEE Journal of Solid-State Circuits, 34(5), 599–606.

    Article  Google Scholar 

  19. Scott, M., Boser, B., & Pister, K. (2003). An ultralow-energy ADC for smart dust. IEEE Journal of Solid-State Circuits, 38(7), 1123–1129.

    Article  Google Scholar 

  20. Bardsley, S., Dillon, C., Kummaraguntla, R., Lane, C., Ali, A., Rigsbee, B., et al. (2006). A 100-dB SFDR 80-MSPS 14-Bit 0.35-μm BiCMOS pipeline ADC. IEEE Journal of Solid-State Circuits, 41(9), 2144–2153.

    Article  Google Scholar 

  21. Yuan, J., Fung, S. W., Chan, K. Y., & Xu, R. (2012). A 12-bit 20 MS/s 56.3 mW pipelined ADC with interpolation-based nonlinear calibration. IEEE Transactions on Circuits System I, 59(3), 555–565.

    Article  MathSciNet  Google Scholar 

  22. Chae, Y., & Han, G. (2009). Low voltage, low power, inverter-based switched-capacitor delta-sigma modulator. IEEE Journal of Solid-State Circuits, 44(2), 458–472.

    Article  Google Scholar 

  23. Cannillo, F., Prefasi, E., Hernandez, L., Pun, E., Yazicioglu, F., & Van Hoof, C. (2011). 1.4V 13 μ modulator with dual-slope quantizer and PWM DAC for biopotential signal acquisition. In Proceedings of IEEE European solid-state circuits conference (ESSCIRC) (pp. 267–270).

  24. Yeknami, A. F., & Alvandpour, A. (2013). A 2.1 μ modulator for medical implant devices in 65 nm CMOS. Analog Integrated Circuits and Signal Processing, 77(1), 69–78.

    Article  Google Scholar 

  25. Devarajan, S., Singer, L., Kelly, D., Decker, S., Kamath, A., & Wilkins, P. (2009). A 16b 125MS/s 385mW 78.7dB SNR CMOS pipeline ADC. ISSCC Digest of Technical Papers (pp. 86–87, 87a).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kairang Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, K., Harikumar, P. & Alvandpour, A. Design of a 12.8 ENOB, 1 kS/s pipelined SAR ADC in 0.35-μm CMOS. Analog Integr Circ Sig Process 86, 87–98 (2016). https://doi.org/10.1007/s10470-015-0648-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-015-0648-2

Keywords

Navigation