Skip to main content
Log in

A new Chua’s circuit with monolithic Chua’s diode and its use for efficient true random number generation in CMOS 180 nm

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In this work we have proposed a new Chua’s circuit which its negative resistor is a monolithic CMOS based circuit with 12 transistors, and then a true random number generator (TRNG) is proposed based on this new Chua’s circuit which works. This proposed system also consists of a sample and hold block, an analog to digital converter (ADC) block and a linear feedback shift register (LFSR) block which scrambles generated bit stream and increases randomness. We changed the number of LFSR bits from 6 to 32, Experiments confirmed that the 6 bits length is optimum for LFSR which was better than previous works. In order to confirm correctness of the proposed TRNG, we applied four levels of FIPS140-1 statistical tests of National Institute of Standards and Technology then by varying the ADC resolution; we determined the allowable range which these tests were passed with and without using LFSR. Experiments confirmed that using LFSR lets us have smaller ADC and tests are passed better. Simulations were performed in system level and circuit level; also the system level simulation was used as golden model and was performed with MATLAB and circuit level was performed with SPICE and CMOS TECH 180 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Bohl, E., Lewis, M., and Gallein, S. (2014). A true random number generator with on-line testability. In 19th IEEE European Test Symposium (ETS), 2014 (pp. 1–6).

  2. Ergün, S. (2007). Truly random number generators based on a non-autonomous chaotic oscillator. AEU-International Journal of Electronics and Communications, 61, 235–242.

    Article  Google Scholar 

  3. True randomness. http://www.random.org. Accessed 15 Feb 2014.

  4. Maheshwari, R., Gupta, S., Sharma, V., & Chauhan, V. (2014). VRS algorithm a novel approach to generate pseudo random numbers. In IEEE International Advance Computing Conference (IACC), 2014 (pp. 7–10).

  5. Beirami, A., Nejati, H., and Massoud, Y. (2012). A performance metric for discrete-time chaos-based truly random number generators. arXiv:1201.2201.

  6. Hu, Y., Liao, X., Wong, K.-W., & Zhou, Q. (2009). A true random number generator based on mouse movement and chaotic cryptography. Chaos, Solitons & Fractals, 40, 2286–2293.

    Article  Google Scholar 

  7. Thamrin, N., Witjaksono, G., Nuruddin, A., and Abdullah, M. (2009). An enhanced hardware-based hybrid random number generator for cryptosystem. In ICIME’09. International Conference on Information Management and Engineering, 2009. (pp. 152–156).

  8. Gunsel, B. (2006) Multimedia Content Representation, Classification and Security: International Workshop, MRCS 2006, Istanbul, Turkey, September 1113, 2006, Proceedings: Springer.

  9. Random sequence generator based on Chua circuit. http://holdenc.altervista.org/Chua. Accessed 15 Apr 2014.

  10. National Institute of Standard and Technology. (1994). Security requirements for cryptographic modules. FIPS140-1.

  11. Koyuncu, I., Ozcerit, A.T., Pehlivan, I., and Avaroglu, E. (2014) Design and implementation of chaos based true random number generator on FPGA. In 22nd Signal Processing and Communications Applications Conference (SIU), 2014 (pp. 236–239).

  12. Amaki, T., Hashimoto, M., Mitsuyama, Y., & Onoye, T. (2013). A worst-case-aware design methodology for noise-tolerant oscillator-based true random number generator with stochastic behavior modeling. IEEE Transactions on Information Forensics and Security, 8, 1331–1342.

    Article  Google Scholar 

  13. Ergün, S., Güler, Ü., & Asada, K. (2011). IC truly random number generators based on regular & chaotic sampling of chaotic waveforms. Nonlinear Theory and Its Applications, IEICE, 2, 246–261.

    Article  Google Scholar 

  14. Santoro, R., Sentieys, O., and Roy, S. (2009). On-the-fly evaluation of FPGA-based true random number generator. In ISVLSI’09. IEEE Computer Society Annual Symposium on VLSI, 2009. (pp. 55–60).

  15. Yuhua, W., Hongyong, W., Aihong, G., and Huanguo, Z. (2009). Evolutionary design of random number generator. In JCAI’09. International Joint Conference on Artificial Intelligence. (pp. 256–259).

  16. Vasyltsov, I., Hambardzumyan, E., Kim, Y.-S., and Karpinskyy, B. (2008). Fast digital TRNG based on metastable ring oscillator. In Cryptographic Hardware and Embedded SystemsCHES 2008 (pp. 164–180) Springer.

  17. Ergiin, S., and Ozoguz, S. Truly random number generators based on a double-scroll attractor. (2006). In MWSCAS’06. 49th IEEE International Midwest Symposium on Circuits and Systems (pp. 322–326).

  18. Bucci, M., Germani, L., Luzzi, R., Tommasino, P., Trifiletti, A., & Varanonuovo, M. (2003). A high-speed IC random-number source for smartcard microcontrollers. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 50, 1373–1380.

    Article  Google Scholar 

  19. Lee, H., & Moon, S. (2002). Parallel stream cipher for secure high-speed communications. Signal Processing, 82, 259–265.

    Article  MATH  Google Scholar 

  20. Zarei Moghadam, I., Rostami, A.S., and Tanhatalab, M.R. (2010). Designing a random number generator with novel parallel LFSR substructure for key stream ciphers. In International Conference on Computer Design and Applications (ICCDA). (pp. V5-598–V5-601).

  21. Cicek, I., Pusane, A.E., and Dundar, G.A. (2012). A feasibility study of a 1D chaotic map for true random number generation. In 20th Signal Processing and Communications Applications Conference (SIU), 2012 (pp. 1–4).

  22. Khanzadi, H., Eshghi, M., & Borujeni, S. E. (2013). Design and FPGA implementation of a pseudo random bit generator using chaotic maps. IETE Journal of Research, 59, 63.

    Article  Google Scholar 

  23. Wei, W., Tang, W., and Guo, H. (2010). High speed true random number generation using chaotic light. In Quantum Electronics and Laser Science Conference (p. JThE27).

  24. Wei, W., and Guo, H. (2009). Quantum random number generator based on the photon number decision of weak laser pulses. In Conference on Lasers and Electro-Optics/Pacific Rim (p. TUP5_41).

  25. Hlavác, J., Lórencz, R., and Hadácek, M. (2010). True random number generation on an Atmel AVR microcontroller. In 2nd International Conference on Computer Engineering and Technology (ICCET) (pp. V2-493–V2-495).

  26. Sugiura, T., Yamanashi, Y., & Yoshikawa, N. (2011). Demonstration of 30 gbit/s generation of superconductive true random number generator. IEEE Transactions on Applied Superconductivity, 21, 843–846.

    Article  Google Scholar 

  27. Guler U., and Ergun, S. (2010) Monolithic implementation of a double-scroll chaotic attractor and application to random number generation. In 17th IEEE International Conference on Electronics, Circuits, and Systems (ICECS), 2010. (pp. 1037–1040).

  28. Rosselló, J. L., Canals, V., Paúl, I. D., Bota, S., & Morro, A. (2008). A simple CMOS chaotic integrated circuit. IEICE Electronics Express, 5, 1042–1048.

    Article  Google Scholar 

  29. Nejati, H., Beirami, A., & Ali, W. H. (2012). Discrete-time chaotic-map truly random number generators: design, implementation, and variability analysis of the zigzag map. Analog Integrated Circuits and Signal Processing, 73, 363–374.

    Article  Google Scholar 

  30. Guinee, R., Blaszczyk, M. (2009). Experimental validation of the hardware implementation of a novel true random binary sequence generator for keystream applications. MILCOM 2009. IEEE Military Communications Conference, 2009 (pp. 1–7).

  31. Yalcin, M.E., Suykens, J.A., and Vandewalle, J. (2004) A double scroll based true random bit generator. In ISCAS’04. Proceedings of the 2004 International Symposium on Circuits and Systems, 2004 (pp. IV-581–4 Vol. 4).

  32. Blaszczyk, M., and Guinee, R.A. (2009). Hardware implementation on PCB in tandem with FPGA and experimental validation of a novel true random binary generator. In SOCC 2009. IEEE International SOC Conference, 2009 (pp. 47–50).

  33. Matsumoto, T., Chua, L. O., & Komuro, M. (1985). The double scroll. IEEE Transactions on Circuits and Systems, 32, 797–818.

    Article  MATH  MathSciNet  Google Scholar 

  34. Jackson, L., Lindgren, A., and Kim, Y. (1984). A chaotic attractor from Chua’s circuit. In IEEE Transactions on Circuits and Systems (Vol. 31).

  35. Kennedy, M. P. (1992). Robust OP Amp realization of Chua’s circuit. FREQUENZ, 46, 66–80.

    Article  Google Scholar 

  36. Matsumoto, T., Chua, L., & Komuro, M. (1986). The double scroll bifurcations. International Journal of Circuit Theory and Applications, 14, 117–146.

    Article  MathSciNet  Google Scholar 

  37. Cruz, J.M., and Chua, L.O. (1992). A CMOS IC nonlinear resistor for Chua’s circuit. In: IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications (Vol. 39, pp. 985–995).

  38. Rodríguez-Vázquez, A., & Delgado-Restituto, M. (1993). CMOS design of chaotic oscillators using state variables: a monolithic Chua’s circuit. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 40, 596–613.

    Article  Google Scholar 

  39. Delgado-Restituto, M., and Rodriguez-Vazquez, A. (1993). A CMOS analog chaotic oscillator for signal encryption. In ESSCIRC’93. Nineteenth European Solid-State Circuits Conference, 1993 (pp. 110–113).

  40. Radwan, A. G., Soliman, A. M., & El-Sedeek, A.-L. (2003). An inductorless CMOS realization of Chua’s circuit. Chaos, Solitons & Fractals, 18, 149–158.

    Article  Google Scholar 

  41. Antoniou, A. (1969) Realization of gyrators using opamps and their use in RC-active network synthesis. In Proceedings of the IEE (Vol 116, pp. 1838–1850).

  42. Aguirre, L. (2000). Inductorless Chua’s circuit. Electronics Letters, 36, 1915–1916.

    Article  Google Scholar 

  43. Kiliç, R., Alçi, M., ÇAM, U., & Kuntman, H. (2002). Improved realization of mixed-mode chaotic circuit. International Journal of Bifurcation and chaos, 12, 1429–1435.

    Article  Google Scholar 

  44. Morgül, Ö. (1995). Inductorless realisation of Chua oscillator. Electronics Letters, 31, 1403–1404.

    Article  Google Scholar 

  45. O’Donoghue, K., Kennedy, M. P., Forbes, P., Qu, M., & Jones, S. (2005). A fast and simple implementation of Chua’s oscillator with cubic-like nonlinearity. International Journal of Bifurcation and Chaos, 15, 2959–2971.

    Article  MATH  Google Scholar 

  46. Kılıç, R. (2010). A practical guide for studying Chua’s circuits. Hackensack: World Scientific.

    Google Scholar 

  47. Leonov, G. A., & Kuznetsov, N. V. (2013). Hidden attractors in dynamical systems. From hidden oscillations in Hilbert–Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits. International Journal of Bifurcation and Chaos, 23, 1330002-1–1330002-69.

  48. Leonov, G., Kuznetsov, N., & Vagaitsev, V. (2011). Localization of hidden Chuaʼs attractors. Physics Letters A, 375, 2230–2233.

    Article  MATH  MathSciNet  Google Scholar 

  49. Kuznetsov, N., Leonov, G., and Vagaitsev, V. (2010) Analytical-numerical method for attractor localization of generalized Chua’s system. IFAC Proceedings Volumes (IFAC-PapersOnline) (Vol. 4, pp. 29–33).

  50. Leonov, G., Vagaitsev, V., & Kuznetsov, N. (2010). Algorithm for localizing Chua attractors based on the harmonic linearization method. Doklady Mathematics, 82, 663–666.

    Article  MATH  MathSciNet  Google Scholar 

  51. Chua Circuits. http://www.Chuacircuits.com/diagram.php Accessed 15 Feb 2014.

  52. Chen, J., Ran, L., & Chen, K. (2001). A random sequence generator based on chaotic circuits. Journal of Electronics (China), 18(1), 56–60.

    Article  Google Scholar 

  53. Yalcin, M. E., Suykens, J. A., & Vandewalle, J. (2004). True random bit generation from a double-scroll attractor. IEEE Transactions on Circuits and Systems I: Regular Papers, 51, 1395–1404.

    Article  MathSciNet  Google Scholar 

  54. Blaszczyk, M., and Guinee, R. (2008). A true random binary sequence generator based on chaotic circuit. In IET Irish Signals and Systems Conference, 208.(ISSC 2008). (pp. 294–299).

  55. Ergün, S. and Özogüz, S. (2010). Truly random number generators based on non‐autonomous continuous‐time chaos. International Journal of Circuit Theory and Applications (Vol. 38, pp. 1–24).

  56. Cicek, I., Pusane, A. E., & Dundar, G. (2014). A novel design method for discrete time chaos based true random number generators. The VLSI Journal Integration, 47, 38–47.

    Article  Google Scholar 

  57. Krummenacher, F., & Joehl, N. (1988). A 4-MHz CMOS continuous-time filter with on-chip automatic tuning. IEEE Journal of Solid-State Circuits, 23, 750–758.

    Article  Google Scholar 

  58. Statistical fips random number test. http://www.nist.gov/itl/lab/fips/fip140-1.txt. Accessed 22 Nov 2013.

Download references

Acknowledgments

The authors wish to thank the following persons for their helps: Mr. Mohammad Larijani, Mr. Hassan Tavakoli, Dr. Mohsen Jalali, Dr. Ali Nasrabadi, Dr. Alireza Behrad, Mr. Hamid Moqadasi, Miss Hamideh Amiri, Miss Mahdie Rasoulifard and Miss Zahra Rashvandi. The first author specially wishes to thank her beloved parents for their supports and encouragements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Ghaznavi-Ghoushchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moqadasi, H., Ghaznavi-Ghoushchi, M.B. A new Chua’s circuit with monolithic Chua’s diode and its use for efficient true random number generation in CMOS 180 nm. Analog Integr Circ Sig Process 82, 719–731 (2015). https://doi.org/10.1007/s10470-015-0498-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-015-0498-y

Keywords

Navigation