Skip to main content
Log in

System identification and modelling based on a double modified multi-valued neural network

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

A novel identification technique for the extraction of lumped circuit models of general distributed or stray devices is presented. The approach is based on two multi-valued neuron neural networks used in a joined architecture able to extract hidden parameters. The convergence allows the validation of the approximated lumped model and the extraction of the correct values. The inputs of the neural network are the geometrical parameters of a given structure, while the outputs represent the estimation of the lumped circuit parameters. The method uses a frequency response analysis approach in order to elaborate the data to present to the net.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhang, Q. J., Ton, L., & Cao, Y. (2007). Microwave modeling using artificial neural networks and applications to embedded passive modeling. In Proceedings of microwave and millimeter wave technology conference in ICMMT 2007 (pp. 1–4).

  2. Avitabile, G., Chellini, B., Fedi, G., Luchetta, A., & Manetti, S. (2001). A neural architecture for the parameter extraction of high frequency devices. In Proceedings of IEEE International Symposium on Circuits and Systems in (ISCAS2001) Sidney, Australia May 2001.

  3. Pratap, R., Staiculescu, D., Pinel, S., Laskar, J., & May, G. (2005). Modeling and sensitivity analysis of circuit parameters for flip-chip interconnects using neural networks. IEEE Transactions on Advanced Packaging, 28(2), 71–78.

    Article  Google Scholar 

  4. Shinterimov, A., Tang, W. H., & Wu, Q. H. (2010). Transformer core parameter identification using frequency response analysis. IEEE Transactions on Magnetics, 46(1), 141–149.

    Article  Google Scholar 

  5. Rashtchi, V., Rahimpour, E., & Rezapour, E. M. (2006). Using a genetic algorithm for parameter identification of transformer R-L-C-M model. Electrical Engineering, 88, 417–422.

    Article  Google Scholar 

  6. Shinterimov, A., Tang, W. J., Tang, W. H., & Wu, Q. H. (2010). Improved modelling of power transformer winding using bacterial swarming algorithm and frequency response analysis. Electric Power Systems Research, 80, 1111–1120.

    Article  Google Scholar 

  7. Tang, W. H., He, S., Wu, Q. H., & Richardson, Z. J. (2006). Winding deformation identification using a particle swarm optimiser with passive congregation of power transformers. International Journal of Innovations in Energy Systems and Power, 1(11), 46–52.

    Google Scholar 

  8. Aizenberg, I., Aizenberg, N. N., & Vandewalle, J. (2000). Multi-valued and universal binary neurons, theory, learning and applications. Dordecht: Kluwer Academic Publishers.

    Book  Google Scholar 

  9. Fedi, G., Luchetta, A., Manetti, S., & Piccirilli, M. C. (1998). A new symbolic method for analog circuit testability evaluation. IEEE Transactions on Instrumentation and Measurement, 47(10), 554–565.

    Article  Google Scholar 

  10. Aizenberg, N. N., & Ivaskiv, Y. L. (1977). Multiple-valued threshold logic. Kiev: Naukova Dumka Publisher House. (in Russian).

    Google Scholar 

  11. Aizenberg, I., Paliy, D., Zurada, J., & Astola, J. (2008). Blur identification by multilayer neural network based on multivalued neurons. IEEE Transactions on Neural Networks, 19, 883–898.

    Article  Google Scholar 

  12. Aizenberg, I., & Moraga, C. (2007). Multilayer feedforward neural network based on multi-valued neurons (MLMVN) and a backpropagation learning algorithm. Soft Computing, 11, 169–183.

    Article  Google Scholar 

  13. Aizenberg, I., Paliy, D., Zurada, J., & Astola, J. (2008). Blur identification by multilayer neural network based on multivalued neurons. IEEE Transactions on Neural Networks, 19(5), 883–898.

    Article  Google Scholar 

  14. Aizenberg, I., & Moraga, C. (2007). The genetic code as a function of multiple-valued logic over the field of complex numbers and its learning using multilayer neural network based on multi-valued neurons. Journal of Multiple-Valued Logic and Soft Computing, 4–6(11), 605–618.

    Google Scholar 

  15. Aizenberg, I., & Zurada, J. (2007). Solving selected classification problems in bioinformatics using multilayer neural network based on multi-valued neurons (MLMVN). In J. Marques de Sá et al. (Eds.), Proceedings of the International Conference on Artificial Neural Networks (ICANN-2007), Lecture Notes in Computer Science, 4668, Part I, Springer, Berlin, Heidelberg, New York (pp. 874–883).

  16. Lawson, C. L., & Hanson, R. J. (1974). Solving least squares problems. Englewood Cliffs, NJ: Prentice-Hall.

    MATH  Google Scholar 

  17. Golub, G. H., & Van Loan, C. F. (1996). Matrix computations (Vol. 3rd, p. 694). Baltimore, Md: Johns Hopkins University Press.

    MATH  Google Scholar 

  18. Householder, A. S. (1958). Unitary triangularization of a nonsymmetric matrix. Journal of the ACM, 5(4), 339–342.

    Article  MATH  MathSciNet  Google Scholar 

  19. Stoer, J., & Bulirsch, R. (1991). Introduction to numerical analysis (Vol. II). New York, Inc.: Springer-Verlag Publishers.

    Google Scholar 

  20. Aizenberg, I., Luchetta, A., & Manetti, S. (2012). A modified learning algorithm for the multilayer neural network with multi-valued neurons based on the complex QR decomposition. Soft Computing, 16(4), 263–275.

    Article  Google Scholar 

  21. Fedi, G., Giomi, R., Luchetta, A., Manetti, S., & Piccirilli, M. C. (1998). On the application of symbolic techniques to the multiple fault location in low testability analog circuits. IEEE Transactions on Cicuits and Systems II, 45, 1383–1388.

    Google Scholar 

  22. Liberatore, A., Manetti, S., & Piccirilli, M.C. (1994). A new efficient method for analog circuit testability measurement. In Proceedings of IMTC’94, Hamamatsu, Japan (pp. 193–196).

  23. Fedi, G., Manetti, S., Piccirilli, M. C., & Starzyk, J. (1999). Determination of an optimum set of testable components in the fault diagnosis of analog linear circuits. IEEE Transactions on Circuits and Systems—Part I, 46, 779–787.

    Article  Google Scholar 

  24. Manetti, S., & Piccirilli, M. C. (2003). A singular-value decomposition approach for ambiguity group determination in analog circuits. IEEE Transactions on Circuits and Systems—Part I, 50(4), 477–487.

    Article  MathSciNet  Google Scholar 

  25. Sen, N., & Saeks, R. (1979). Fault diagnosis for linear systems via multifrequency measurement. IEEE Transactions Circuits and System, 26, 457–465.

    Article  MATH  MathSciNet  Google Scholar 

  26. Bartoli, M., Reatti, A., & Kazimierczuk, M. K. (1994). Modeling of ironpowder inductors at high frequencies. In Proceedings of the IEEE Industry Applications Conference in Denver, CO (pp. 1225–1232).

  27. Roger, D., Napieralska-Juszczak, E., & Henneton, A. (2006). High frequency extension of non-linear models of laminated cores. International Journal Computation and Mathematics in Electrical and Electronics Engineering, 25, 140–156.

    Article  MATH  Google Scholar 

  28. Fedi, G., Manetti, S., Pelosi, G., & Selleri, S. (2002). FEMtrained artificial neural networks for the analysis and design of cylindrical posts in rectangular waveguide. Electromagnetics, 22, 323–330.

    Article  Google Scholar 

  29. Pelosi, G., Coccioli, R., & Selleri, S. (1998). Quick finite elements method for electromagnetic waves (pp. 89–113). London: Artech House.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Luchetta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grasso, F., Luchetta, A., Manetti, S. et al. System identification and modelling based on a double modified multi-valued neural network. Analog Integr Circ Sig Process 78, 165–176 (2014). https://doi.org/10.1007/s10470-013-0211-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-013-0211-y

Keywords

Navigation