Skip to main content
Log in

Accurate analysis of spectral regrowth of nonlinear power amplifier driven by cyclostationary modulated signals

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper we present an exact analytical expression to calculate the spectral regrowth at the output of a nonlinear power amplifier (PA) using the higher order cumulants and Poisson summation formula. This PA is driven by the filtered digitally modulated signals. To improve the accuracy of the calculations, the cyclosationarity of the input signal is considered. Moreover, closed-form expressions for the 1-dB compression and saturation points are extracted as a function of the PA model parameters, higher order statistics of the input signal, and the transfer function of the pulse shaping filter. In addition, an analytical expression for the adjacent channel power (ACP) and a closed-form expression of the ACP ratio are derived. This is followed by investigation of the effect of the PA nonlinearity on the performance of receiver. Simulation studies are carried out to verify the accuracy of the derived expressions. Excellent agreement between the analytical and simulation results is achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Reynaert, P., & Steyaert, M. (2006). RF power amplifiers for mobile communications. Dordrecht: Springer.

    Google Scholar 

  2. Cripps, S. (2006). RF power amplifiers for wireless communications (2nd ed.). Norwood, MA: Artech House.

    Google Scholar 

  3. Lavradore, P. M., Cunha, T. R., Cabral, P. M., & Pedro, J. C. (2010). The linearity-efficiency compromise. IEEE Microwave Magazine, 11(5), 44–58.

    Article  Google Scholar 

  4. Palicot, J. (2012). Cross-layer sensors for green cognitive radio. Annals of Telecommunications, 67(3–4), 171–180.

    Article  Google Scholar 

  5. Schreurs, D., O’droma, M., Goacher, A. A., & Gadringer, M. (2009). RF power amplifier behavioral modeling. New York: Cambridge University Press.

    Google Scholar 

  6. Goldsmith, A., Jafar, S. A., Maric, I., & Srinivasa, S. (2009). Breaking spectrum gridlock with cognitive radios: An information theoretic perspective. Proceedings of the IEEE, 97(5), 894–914.

    Article  Google Scholar 

  7. Gard, K. G., Gutierrez, H. M., & Steer, M. B. (1999). Characterization of spectral regrowth in microwave amplifiers based on the nonlinear transformation of a complex Gaussian process. IEEE Transactions on Microwave Theory and Techniques, 47(7), 1059–1069.

    Article  Google Scholar 

  8. Costa, E., & Pupolin, S. (2002). M-QAM-OFDM system performance in the presence of a nonlinear amplifier and phase noise. IEEE Transactions on Communications, 50(3), 462–472.

    Article  Google Scholar 

  9. Zhou, G. T., & Raich, R. (2004). Spectral analysis of polynomial nonlinearity with applications to RF power amplifiers. Journal on Applied Signal Process, Special Issue on Nonlinear Signal and Image Process, 2004(12), 1831–1840.

    Google Scholar 

  10. Rahmati, M. M., Abdipour, A., Mohammadi, A., & Moradi, G. (2011). An analytic approach for CDMA output of feedforward power amplifier. Analog Integrated Circuits and Signal Processing, 66, 349–361.

    Article  Google Scholar 

  11. Madani, M. H., Abdipour, A., & Mohammadi, A. (2010). Analysis of performance degradation due to non-linearity and phase noise in orthogonal frequency division multiplexing systems. IET Communications, 4(10), 1226–1237.

    Article  MathSciNet  Google Scholar 

  12. Boulejfen, N., Harguem, A., Hammi, O., Ghannouchi, F. M., & Gharsallah, A. (2010). Analytical prediction of spectral regrowth and correlated and uncorrelated distortion in multicarrier wireless transmitters exhibiting memory effect. IET Microwaves, Antennas and Propagation, 4(6), 685–696.

    Article  Google Scholar 

  13. Zhou, G. T. (2000). Analysis of spectral regrowth of weakly nonlinear power amplifier. IEEE Communication Letters, 4(11), 357–359.

    Article  Google Scholar 

  14. Zhou, G. T., & Kenney, J. S. (2002). Predicting spectral regrowth of nonlinear power amplifiers. IEEE Transactions on Communications, 50(5), 718–722.

    Article  Google Scholar 

  15. Raich, R., & Zhou, G. T. (2001). Analyzing spectral regrowth of QPSK and OQPSK signals. In: Proceedings of the IEEE international conference on acoustics, speech, and signal processing (ICASSP ’01) (pp. 2673–2676).

  16. Raich, R., & Zhou, G. T. (2004). Spectral analysis for bandpass nonlinearity with cyclostationary input. In: Proceedings of the IEEE international conference on acoustics, speech, and signal processing (ICASSP ’04), Quebec, Canada (pp. ii465–ii468).

  17. Cottais, E., Wang, Y., & Toutain, S. (2008). Spectral regrowth analysis at the output of a memoryless power amplifier with multicarrier signals. IEEE Transactions on Communications, 56(7), 1111–1118.

    Article  Google Scholar 

  18. Proakis, J. G., & Salehi, M. (2008). Digital communications (5th ed.). New York: McGraw-Hill.

    Google Scholar 

  19. Qi, J., & Aissa, S. (2010). Analysis and compensation of power amplifier nonlinearity in MIMO transmit diversity systems. IEEE Transactions on Vehicular Technology, 59(6), 2921–2931.

    Article  Google Scholar 

  20. Bendetto, S., & Biglieri, E. (1999). Principles of digital transmission: With wireless applications. New York: Kluwer/Plenum Publishers.

    Google Scholar 

  21. Brillinger, D. R. (1981). Time series: Data analysis and theory. San Francisco, CA: Holden-day Inc.

    MATH  Google Scholar 

  22. Dobre, O. A., & Bar-Ness, Y., & Su, W. (2003). Higher-order cyclic cumulants for high order modulation classification. In Proceedings of the IEEE military communications conference (MILCOM) (pp. 112–117).

  23. Nikias, C. L., & Petropulu, A. P. (1993). Higher-order spectra analysis, a nonlinear signal processing framework. Englewood Cliffs, NJ: Prentice-Hall.

    MATH  Google Scholar 

  24. Li, J., & Liu, Q. (2006). PSK communications systems using fully saturated power amplifiers. IEEE Transactions on Aerospace and Electronic Systems, 42(2), 464–477.

    Article  Google Scholar 

  25. Hayes, M. H. (1996). Statistical digital signal processing and modeling. New York: Wiley.

    Google Scholar 

  26. Pinsky, M. A. (2002). Introduction to Fourier analysis and wavelets. Pacific Grove, CA: Brooks/Cole.

    MATH  Google Scholar 

  27. Surmfels, B. (2002). Solving systems of polynomial equations. Providence, RI: American Mathematical Society.

    Google Scholar 

  28. Flohberger, M., Gappmair, W., & Koudelka, O. (2010). Modulation classifier for signals used in satellite communications. In Proceedings of the 5th advanced satellite multimedia systems conference (ASMA) and 11th signal processing for space communication workshop (SPSC) (pp. 198–202).

Download references

Acknowledgments

This work was supported in part by Iran Telecommunication Research Center (ITRC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Mohammadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Majidi, M., Mohammadi, A. & Abdipour, A. Accurate analysis of spectral regrowth of nonlinear power amplifier driven by cyclostationary modulated signals. Analog Integr Circ Sig Process 74, 425–437 (2013). https://doi.org/10.1007/s10470-012-9986-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-012-9986-5

Keywords

Navigation