Skip to main content
Log in

A high-speed differential CMOS Schmitt trigger with regenerative current feedback and adjustable hysteresis

  • MIXED SIGNAL LETTER
  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a brief overview of Schmitt triggers and proposes a new differential current-feedback Schmitt trigger. The hysteresis of the proposed Schmitt trigger is generated using regenerative current feedback and can be adjusted by varying the current of the regenerative feedback network. The center of the hysteresis can also be adjusted by varying the common-mode input voltage. The proposed Schmitt trigger has the characteristics of current-mode circuits, making it particularly attractive for low-voltage high-speed applications. The proposed Schmitt trigger has been designed in TSMC-0.18 μm 1.8 V CMOS technology and analyzed using Spectre from Cadence Design Systems with BSIM3V3 device models. Simulation results are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Schmitt, O. (1938). A thermionic trigger. Journal of Scientific Instruments, 15, 24–26.

    Article  Google Scholar 

  2. Seo, S., Jeong, Y., & Kenney, J. (2007). A modified CMOS frequency doubler considering delay time matching condition. In Proceedings of international symposium on information technology convergence (pp. 392–395).

  3. Wu C., & Chiang, C. (2004). A low-photo current CMOS retinal focal-plane sensor with a pseudo-BJT smoothing network and an adaptive current Schmitt trigger for scanner applications. IEEE Sensors Journal, 4(4), 510–518.

    Article  Google Scholar 

  4. Kulkarni, J., Kim, K., & Roy, K. (2007). A 160 mV robust Schmitt trigger based sub-threshold SRAM. IEEE Journal of Solid-State Circuits, 42(10), 2303–2313.

    Article  Google Scholar 

  5. Park, D., Rhee, J., & Joo, Y. (2009). Wide dynamic range and high SNR self-reset CMOS image sensor using a Schmitt trigger. In Proceedings of IEEE sensor conference (pp. 294–296).

  6. Liu, W., Vichienchom, K., Clements, M., DeMarco, S., Hughes, C., McGucken, E., et al. (2000). A neuro-stimulus chip with telemetry unit for retinal prosthetic device. IEEE Journal of Solid-State Circuits, 10(35), 1487–1497.

    Article  Google Scholar 

  7. Choi, B., Yao, J., Han, S., Xie, X., Li, G., & Wang, Z. (2007). A 2.4 GHz low power wireless transceiver analog front-end for endoscopy capsule system. Analog Integrated Circuits Signal Processing, 51, 59–71.

    Article  Google Scholar 

  8. Sedra A., & Smith, K. (1998). Microelectronic circuits (4th ed.). New York: Oxford University Press.

    Google Scholar 

  9. Dokic, B. (1984). CMOS Schmitt triggers. IEE Proceedings—Part G, Circuits, Devices, Systems, 131(5), 197–202.

    Google Scholar 

  10. Filanovsky, I. & Baltes, H. (1994). CMOS Schmitt trigger design. IEEE Transactions on Circuits and Systems I, 41(1), 46–49.

    Article  Google Scholar 

  11. Steyaert M., & Sansen, W. (1986). Novel CMOS Schmitt trigger. IEE Electronics Letters 2(4), 203–204.

    Article  Google Scholar 

  12. Wang, Z. (1991). CMOS adjustable Schmitt trigger. IEEE Transactions on Instrumentation Measurement, 40(3), 601–605.

    Article  Google Scholar 

  13. Kim, D., Kih, J., & Kim, W. (1993). A new waveform-reshaping circuit: An alternative approach to Schmitt trigger. IEEE Journal of Solid-State Circuits, 28(2), 162–164.

    Article  Google Scholar 

  14. Al-Sarawi, S. (2002). Low power Schmitt trigger circuit. IEE Electronics Letters, 38(18), 1009–1010.

    Article  Google Scholar 

  15. Zhang, C., Srivastava, A., & Ajmera, P. (2003). Low voltage CMOS schmitt trigger circuits. IEE Electronics Letters, 39(24), 1696–1698.

    Article  Google Scholar 

  16. Pedroni, V. (2005). Low-voltage high-speed Schmitt trigger and compact window comparator. IEE Electronics Letters, 41(22), 1213–1214.

    Article  Google Scholar 

  17. Pfister, A. (1992). Novel CMOS Schmitt trigger with controllable hysteresis. IEE Electronics Letters, 28(7), 639–641.

    Article  Google Scholar 

  18. Katyal, V., Geiger, R., & Chen, D. (2008). Adjustable hysteresis CMOS Schmitt trigger. In Proceedings of IEEE international symposium on circuits systems (pp. 1938–1941).

  19. Allstot, A. (1982) A precision variable-supply CMOS comparator. IEEE Journal of Solid-State Circuits, 17(6), 1080–1087.

    Article  Google Scholar 

  20. Yuan, F. (2006). CMOS current-mode circuits for data communications. New York: Springer.

    Google Scholar 

  21. Wang Z., & Guggenbuhl, W. (1988). Novel CMOS current Schmitt trigger. IEE Electronics Letters, 24(24), 1514–1516.

    Article  Google Scholar 

  22. Wang Z., & Guggenbuhl, W. (1989). CMOS current Schmitt trigger with fully adjustable hysteresis. IEE Electronics Letters, 25(6), 397–398.

    Article  Google Scholar 

  23. Mochizuki A., & Hanyu, T. (2006). Highly reliable multiple-valued circuit based on dual-rail differential logic. In Proceedings of international symposium on multiple-valued logic (pp. 5–10). Singapore.

  24. Sapawi, R., Chee, R., Sahari, S., & Julai, N. (2008). Performance of CMOS Schmitt trigger. In Proceedings of international conference on computer communication engineering (pp. 1317–1320). Kuala Lumpur.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Yuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, F. A high-speed differential CMOS Schmitt trigger with regenerative current feedback and adjustable hysteresis. Analog Integr Circ Sig Process 63, 121–127 (2010). https://doi.org/10.1007/s10470-009-9374-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-009-9374-y

Keywords

Navigation