Skip to main content
Log in

New grounded simulated inductance circuit using a single PFTFN

  • MIXED SIGNAL LETTER
  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

A new single-PFTFN based lossless grounded inductance simulation circuit has been presented. The proposed circuit employs a single PFTFN along with four resistors and a single capacitor and realises a lossless grounded inductance subject to the fulfillment of only one realization condition. Some sample results of circuits realized with the new simulated inductor using existing CMOS FTFN implementation have been given to demonstrate the workability of the new circuit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Notes

  1. An OMA—is same as a negative FTFN (NFTFN) which is a four-port characterized by i y  = 0, i x  = 0, v x  = v y ; i w  = −i z whereas an OMA+ is same as a positive FTFN (PFTFN) which is a four-port characterized by i y  = 0, i x  = 0, v x  = v y ; i w  = +i z ; v z , v w being arbitrary.

References

  1. Carlin, H. J., & Youla, D. C. (1961). Network synthesis with negative resistors. Proceedings of the IRE, 49(5), 907–920.

    Article  MathSciNet  Google Scholar 

  2. Carlin, H. J. (1964). Singular network elements. IEEE Transactions on Circuit Theory, 11(1), 67–72.

    Google Scholar 

  3. Nordholt, E. H. (1982). Extending Op-amp capabilities by using a current source power supply. IEEE Transactions on Circuits and Systems, 29(6), 411–414.

    Article  Google Scholar 

  4. Stevenson, J. K. (1984). Two way circuits with inverse transmission properties. Electronics Letters, 20(23), 965–967. doi:10.1049/el:19840658.

    Article  Google Scholar 

  5. Senani, R. (1986). On the realisation of floating active elements. IEEE Transactions on Circuits and Systems, 33(3), 323–324. doi:10.1109/TCS.1986.1085896.

    Article  Google Scholar 

  6. Senani, R. (1987). A novel application of four terminal floating nullor. Proceedings of the IEEE, 75(11), 1544–1546.

    Article  Google Scholar 

  7. Huijsing, J. H. (1989). Operational floating amplifier. Proceedings of IEEE International Symposium on CAS, 1, 90–94.

    Google Scholar 

  8. Higashimura, M. (1981). Current mode all pass filter using FTFN with grounded capacitor. Electronics Letters, 27(13), 1182–1183. doi:10.1049/el:19910737.

    Article  Google Scholar 

  9. Huijsing, J. H. (1993). Design and application of operational floating amplifier. Analog Integrated Circuits and Signal Processing, 4, 1125–1129. doi:10.1007/BF01254863.

    Article  Google Scholar 

  10. Higashimura, M. (1993). Current mode low-pass, bandpass, and high-pass filter using an FTFN. Microelectronics Journal, 24(6), 659–662. doi:10.1016/0026-2692(93)90191-G.

    Article  Google Scholar 

  11. Senani, R. (1994). On equivalent forms of single Op-amp sinusoidal RC oscillators. IEEE Transactions on Circuits and Systems I, 41(10), 617–624. doi:10.1109/81.329722.

    Article  Google Scholar 

  12. Liu, S. I. (1995). Cascadable current-mode filters using single FTFN. Electronics Letters, 31(23), 1965–1966. doi:10.1049/el:19951381.

    Article  Google Scholar 

  13. Abuelmaatti, M. T. (1996). Cascadable current mode filter using single FTFN. Electronics Letters, 32(16), 1457–1458. doi:10.1049/el:19960975.

    Article  Google Scholar 

  14. Liu, S. I., & Lee, J. H. (1996). Insensitive current/voltage mode filters using FTFNs. Electronics Letters, 32(12), 1079–1080. doi:10.1049/el:19960729.

    Article  Google Scholar 

  15. Cabeza, R., & Carlosena, A. (1997). Analog universal active device: Theory, design and application. Analog Integrated Circuits and Signal Processing, 12(2), 153–168. doi:10.1023/A:1008221227001.

    Article  Google Scholar 

  16. Leuciuc, A. (1998). The realisation of inverse system for circuits containing nullors with applications in chaos synchronisation. International Journal of Circuit Theory and Applications, 26(1), 1–12. doi:10.1002/(SICI)1097-007X(199801/02)26:1<1::AID-CTA989>3.0.CO;2-B.

    Article  MATH  Google Scholar 

  17. Wang, H. Y., & Lee, C. T. (1998). Cascadable current-mode filters using single FTFN. Electronics Letters, 34(19), 1801. doi:10.1049/el:19981184.

    Article  Google Scholar 

  18. Abuelmaatti, M. T., Al-Zaher, H. A., & Al-Qatani, M. A. (1998). Novel grounded capacitor active biquads using FiTFNs. Microelectronics Journal, 29(3), 123–132. doi:10.1016/S0026-2692(97)00076-1.

    Article  Google Scholar 

  19. Abuelmaatti, M. T., & Al-Zaher, H. A. (1998). Current mode sinusoidal oscillator using two FTFNs. Proceedings of National Science Council (Republic of China), 22(6), 758–764.

    Google Scholar 

  20. Chipipop, B., & Surakompontorn, W. (1999). On the realisation of current-mode FTFN-based high-pass filter and its inverse filter. In Proceedings of 1999 IEEE International Symposium on Intelligent Signal Processing and Communication Systems, ISPAS, Phuket, Thailand, pp. 505–508.

  21. Chipipop, B., & Surakompontorn, W. (1999). Realisation of current-mode FTFN based inverse filter. Electronics Letters, 35(9), 690–691. doi:10.1049/el:19990495.

    Article  Google Scholar 

  22. Bhaskar, D. R. (1999). Single resistance controlled oscillator using a single FTFN. Electronics Letters, 35(3), 190–191. doi:10.1049/el:19990161.

    Article  Google Scholar 

  23. Wang, H. Y., & Lee, C. T. (1999). Using nullors for realisation of current-mode FTFN-based inverse filters. Electronics Letters, 35(22), 1889–1890. doi:10.1049/el:19991336.

    Article  Google Scholar 

  24. Cam, U., & Kuntman, H. (1999). CMOS four terminal floating nullor design using a simple approach. Microelectronics Journal, 30(12), 1187–1194. doi:10.1016/S0026-2692(99)00021-X.

    Article  Google Scholar 

  25. Cam, U., Toker, A., & Kuntman, H. (2000). CMOS FTFN realisation based on translinear cells. Electronics Letters, 36(15), 1255–1256. doi:10.1049/el:20000927.

    Article  Google Scholar 

  26. Cam, U., Cicecoglu, O., & Kuntman, H. (2000). Current mode single input three output (SITO) universal filter employing four terminal floating nullor and reduced number of passive components. Frequenz, 54(3–4), 94–96.

    Google Scholar 

  27. Schmid, H. (2000). Approximating the universal active element. IEEE Transactions on Circuits and Systems II, 47(11), 1160–1169. doi:10.1109/82.885124.

    Article  Google Scholar 

  28. Alzaher, H., & Ismail, M. A. (2002). CMOS fully balanced four -terminal floating nullor. IEEE Transactions on Circuits and Systems II, 49(4), 413–424. (also see ibid, 2003; 50(12):1601).

    Article  Google Scholar 

  29. Higashimura, M., & Fukui, Y. (1992). Realization of immittance function using a single FTFN and its application to filters. In Circuits and Systems, Proceedings of ISCAS 1992, pp. 351–352.

  30. Malhotra, J., & Senani, R. (1994). Class of floating generalised positive/negative immittance converters/inverters realized with operational mirrored amplifiers. Electronics Letters, 30(1), 3–5. doi:10.1049/el:19940067.

    Article  Google Scholar 

  31. Senani, R., & Malhotra, J. (1994). Minimal realisation of a class of operational-mirrored-amplifier based floating impedances. Electronics Letters, 30(14), 1113–1114. doi:10.1049/el:19940791.

    Article  Google Scholar 

  32. Senani, R. (1994). Floating GNIC/GNII configuration realised with only a single OMA. Electronics Letters, 31(6), 423–425. doi:10.1049/el:19950287.

    Article  Google Scholar 

  33. Wang, H. Y., & Lee, C. T. (1998). Realisation of R-L and C-D immittances using a single FTFN. Electronics letters, 34(6), 502–503.

    Article  Google Scholar 

  34. Cam, U., Cicekoglu, O., & Kuntman, H. (2000). Universal series and parallel immittances simulator using four terminal floating nullors. Analog Integrated Circuits and Signal Processing, 25(1), 59–66.

    Article  Google Scholar 

  35. Cam, U., Cicekoglu, O., & Kuntman, H. (2001). Novel lossless floating immittances simulator employing only two FTFNs. Analog Integrated Circuits and Signal Processing, 29(3), 233–236. doi:10.1023/A:1011221716078.

    Article  Google Scholar 

  36. Gandhi, G. (2002). Comment on novel lossless floating immittance simulator employing only two FTFNs. Analog Integrated Circuits and Signal Processing, 32(2), 191. doi:10.1023/A:1019542530070.

    Article  Google Scholar 

  37. Wang, H. Y., Chung, H. W., & Huang, W. C. (2002). Realisation of an n-th order parallel immittances function employing only (n − 1) FTFNs. International Journal of Electronics, 89(3), 645–650. doi:10.1080/0020721021000057580.

    Article  Google Scholar 

  38. Kumar, P., & Senani, R. (2006). A systematic realization of current mode universal biquad filters. International Journal of Electronics, 93(9), 623–636. doi:10.1080/00207210600711655.

    Article  Google Scholar 

Download references

Acknowledgments

The present work was carried out at the Analog Signal processing Research lab of Netaji Subhas Institute of Technology, New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raj Senani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, P., Senani, R. New grounded simulated inductance circuit using a single PFTFN. Analog Integr Circ Sig Process 62, 105–112 (2010). https://doi.org/10.1007/s10470-009-9322-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-009-9322-x

Keywords

Navigation