Skip to main content
Log in

CMOS based capacitive sensor laboratory-on-chip: a multidisciplinary approach

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, we review the recent advances of CMOS-based capacitive sensors for Lab-on-chip (LoC) applications. LoC design is a multidisciplinary approach of adapting classical biochemical assays to a miniaturized platform by exploiting advances in microelectronic and microfluidic technologies. By offering low cost and integrated devices, CMOS based LoCs could be amenable to a large number of biological and biochemical assays for disease diagnostics and biotechnology in the near future. While an exhaustive, all-encompassing review of CMOS-based LoCs is beyond the scope of this review, we have focused on the design and implementation of CMOS-based capacitive sensor LoCs for the most important biochemical applications. For each application, the corresponding biochemical sensing layer, interface circuit and microfluidic packaging technique are discussed based on the recent literature studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Ahn, C. H., Choi, J.-W., Beaucage, G., Nevin, J. H., Lee, J.-B., Puntambekar, A., et al. (2004). Disposable smart lab on a chip for point-of-care clinical diagnostics. Proceedings of the IEEE, 92(1). doi:10.1109/JPROC.2003.820548.

  2. Barbaro, M., Bonfiglio, A., Raffo, L., Alessandrini, A., Facci, P., & BarakBarak, I. (2006). A CMOS, fully integrated sensor for electronic detection of DNA hybridization. IEEE Electron Device Letters, 27(7), 595–597.

    Article  Google Scholar 

  3. Benini, L., Guiducci, C., & Paulus, C. (2007). Electronic detection of DNA hybridization: Toward CMOS microarrays. IEEE Design & Test of Computers, 24(1). doi: 10.1109/MDT.2007.12.

  4. Manaresi, N., Romani, A., Medoro, G., Altomare, L., Leonardi, A., Tartagni, M., et al. (2003). A CMOS chip for individual cell manipulation and detection. IEEE Journal of Solid-State Circuits, 38(12), 2297–2305.

    Article  Google Scholar 

  5. Hierlemann, A. (2005). Integrated chemical microsensor systems in CMOS technology. New York: Springer-Verlag.

    Google Scholar 

  6. Balasubramanian, A., Bhuva, B., Mernaugh, R., & Haselton, F. R. (2005). Si-based sensor for virus detection. IEEE Journal of Sensors, 5(3), 658–663.

    Google Scholar 

  7. Kulah, H., Chae, J., Yazdi, N., & Najafi, K. (2006). Noise analysis and characterization of a sigma-delta capacitive microaccelerometer. IEEE Journal of Solid-State Circuits, 41(2), 352–361.

    Article  Google Scholar 

  8. Romani, A., Manaresi, N., Marzocchi, L., Medoro, G., Leonardi, A., Altomare, L., et al. (2004). Capacitive sensor array for localization of bioparticles in CMOS lab-on-a-chip. Digest of Technical Papers, IEEE ISSCC Conference, pp. 224–225.

  9. Verpoorte, E., & De Rooij, N. F. (2003). Microfluidics meets MEMS. Proceedings of the IEEE, 91(6). doi:10.1109/JPROC.2003.813570.

  10. Mohamed, H., McCurdy, L. D., Szarowski, D. H., Duva, S., Turner, J. N., & Caggana, M. (2004). Development of a rare cell fractionation device: Application for cancer detection. IEEE Transactions on NanoBioscience, 3(4), 251–256.

    Article  Google Scholar 

  11. Mastrangelo, C. H., Burns, M. A., & Burke, D. T. (1998). Microfabricated devices for genetic diagnostics. Proceedings of the IEEE, 86(8). doi:10.1109/5.704282.

  12. Berggren, C., Stålhandske, P., Brundell, J., & Johansson, G. (2003). A feasibility study of a capacitive biosensor for direct detection of DNA hybridization. Electroanalysis, 11(3), 156–160.

    Article  Google Scholar 

  13. Guiducci, C., Stagni, C., Zuccheri, G., Bogliolo, A., Benini, L., Samorìb, B., et al. (2004). DNA detection by integrable electronics. Biosensors & Bioelectronics, 19(8). doi: 10.1016/S0956-5663(03)00266-5.

  14. Stagni, C., Guiducci, C., Benini, L., Ricco, B., Carrara, S., Paulus, C., et al. (2007). A fully electronic label-free DNA sensor chip. IEEE Journal of Sensors, 7(4), 577–585.

    Article  Google Scholar 

  15. Xu, W., Li, J., Xue, M., Carles, M., Trau, D. W., Lenigk, R., et al. (2002). Surface characterization of DNA microarray on silicon dioxide and compatible silicon materials in the immobilization process. Materials Research Society Symposium—Proceedings, 711, pp. 25–30.

  16. Song, Z., Jingjing, D., Ying, L., Jilie, K., & Oliver, H. (2006). Development of a highly enantioselective capacitive immunosensor for the detection of α-amino acids. Analytical Chemistry, 78(21), 7592–7596.

    Article  Google Scholar 

  17. Fahriye, D., Boyaci, C., & Hakki, I. (2007). Development of an immunosensor based on surface plasmon resonance for enumeration of Escherichia coli in water samples. Food Research International, 40(7), 803–807.

    Article  Google Scholar 

  18. Walz, D., Berg, H., & Milazzo, G. (1995). Bioelectrochemistry of cells and tissues. Basel: Birkhauser.

    Google Scholar 

  19. Prakash, S. B., & Abshire, P. (2007). On-chip capacitance sensing for cell monitoring applications. IEEE Journal of Sensors, 7(3), 440–447.

    Article  Google Scholar 

  20. Hagleitner, C., Lange, D., Hierlemann, A., Brand, O., & Baltes, H. (2002). CMOS single-chip gas detection system comprising capacitive, calorimetric and mass-sensitive microsensors. IEEE Journal of Solid-State Circuits, 37(12), 1868–1878.

    Article  Google Scholar 

  21. Ghafar-Zadeh, E., Sawan, M., & Therriault, D. (2008). A 0.18 μm CMOS CApacitive sensor lab-on-chip. Journal of Sensors and Actuators A: Physical, 141(2), 454–462.

    Article  Google Scholar 

  22. Stagni, C., Guiducci, C., Benini, L., Ricco, B., Carrara, S., Samori, B., et al. (2006). CMOS DNA sensor array with integrated A/D conversion based on label-free capacitance measurement. IEEE Journal of Solid-State Circuits, 41(12), 2956–2964.

    Article  Google Scholar 

  23. Sylvester, D., Chen, J. C., & Chenming, H. (1998). Investigation of interconnect capacitance characterization using charge-based capacitance measurement (CBCM) technique and three-dimensional simulation. IEEE Journal of Solid-State Circuits, 33(3), 449–453.

    Article  Google Scholar 

  24. Chang, Y.-W., Chang, H.-W., Lu, T.-C., King, Y.-C., Ting, W., Ku, J., et al. (2006). Interconnect capacitance characterization using charge-injection-induced error-free (CIEF) charge-based capacitance measurement (CBCM). IEEE Transactions on Semiconductor Manufacturing, 19(1), 50–56.

    Article  Google Scholar 

  25. Ghafar-Zadeh, E., & Sawan, M. (2008). A charge based capacitive sensor array for Lab-on-Chip applications. IEEE Journal of Sensors, 8(6), 325–332.

    Article  Google Scholar 

  26. Ghafar-Zadeh, E., & Sawan, M. (2008). A core-CBCM sigma delta capacitive sensor array dedicated to lab-on-chip applications. Sensors and Actuators A: Physical, 144(2), 304–313.

    Article  Google Scholar 

  27. Tartagni, M., & Guerrieri, R. (1998). A fingerprint sensor based on the feedback capacitive sensing scheme. IEEE Journal of Solid-State Circuits, 33(1), 133–142.

    Article  Google Scholar 

  28. Man, P. F., Jones, D. K., & Mastrangelo, C. H. (1997, January). Microfluidic plastic capillaries on silicon substrates: A new inexpensive technology for bioanalysis chips. Proceedings of the Conference on Micro Electro Mechanical Systems, MEMS.

  29. Rasmussen, A., Gaitan, M., Locascio, L. E., & Zaghloul, M. E. (2001). Fabrication techniques to realize CMOS-compatible microfluidic microchannels Microelectromechanical Systems. IEEE Journal of Microelectromechanical System, 10(2), 286–291.

    Article  Google Scholar 

  30. Lee, H., Liu, Y., Westervelt, R. M., & Ham, D. (2006). IC/microfluidic hybrid system for magnetic manipulation of biological cells. IEEE Journal of Solid-State Circuits, 41(6), 1471–1479.

    Article  Google Scholar 

  31. Howlader, M. M. R., Suehara, S., Takagi, H., Kim, T. H., Maeda, R., & Suga, T. (2006). Room-temperature microfluidics packaging using sequential plasma activation process. IEEE Transactions on Advanced Packaging, 29(3), 448–456.

    Article  Google Scholar 

  32. Sethu, P., & Mastrangelo, C. H. (2004). Cast epoxy-based microfluidic systems and their application in biotechnology. Sensors and Actuators B: Chemical, 98(23), 337–346.

    Article  Google Scholar 

  33. Chartier, I., Bory, C., Fuchs, A., Freida, D., Manaresi, N., Ruty, M., et al. (2003). Fabrication of hybrid plastic-silicon micro-fluidic devices for individual cell manipulation by dielectrophoresis. Proceedings of the SPIE, 5345, 208–219.

    Article  Google Scholar 

  34. Vulto, P., Glade, N., Altomare, L., Bablet, J., Tin, L. D., Medoro, G., et al. (2005). Microfluidic channel fabrication in dry film resist for production and prototyping of hybrid chips. Lab on a Chip, 5, 158–162.

    Article  Google Scholar 

  35. Medoro, G., Manaresi, N., Leonardi, A., Altomare, L., Tartagni, M., & Guerrieri, R. (2003). A lab-on-a-chip for cell detection and manipulation. IEEE Journal of Sensors, 3(3), 317–325.

    Article  Google Scholar 

  36. Therriault, D., White, S. R., & Lewis, J. A. (2003). Chaotic mixing in three-dimensional microvascular networks. Nature Materials, 4(2), 265–271.

    Article  Google Scholar 

  37. Therriault, D., Shepherd, R.F., White, S.R., & Lewis, J.A. (2005). Fugitive inks for direct-write assembly of three-dimensional microvascular networks. Advanced Materials, 17(4). doi: 10.1002/adma.200400481.

  38. Ghafar-Zadeh, E., Sawan, M., & Therriault, D. (2007). Novel direct-write CMOS-based laboratory-on-chip: Design, assembly and experimental results. Journal of Sensors and Actuators A: Physical, 134(1), 27–36.

    Article  Google Scholar 

  39. Schmidt, M. A. (1994, June). Silicon wafer bonding for micromechanical devices. Proceedings of Solid State Sensor and Actuator Workshop, Hilton Head, SC.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebrahim Ghafar-Zadeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghafar-Zadeh, E., Sawan, M. & Therriault, D. CMOS based capacitive sensor laboratory-on-chip: a multidisciplinary approach. Analog Integr Circ Sig Process 59, 1–12 (2009). https://doi.org/10.1007/s10470-008-9239-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-008-9239-9

Keywords

Navigation