Skip to main content
Log in

Rings of Quotients of Finite AW -Algebras: Representation and Algebraic Approximation

  • Published:
Algebra and Logic Aims and scope

We show that Berberian’s ∗-regular extension of a finite AW -algebra admits a faithful representation, matching the involution with adjunction, in the ℂ-algebra of endomorphisms of a closed subspace of some ultrapower of a Hilbert space. It also turns out that this extension is a homomorphic image of a regular subalgebra of an ultraproduct of matrix ∗-algebras ℂn×n.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. R. Goodearl and P. Menal, “Free and residually finite dimensional C -algebras,” J. Funct. An., 90, No. 2, 391-410 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  2. S. K. Berberian, “The regular ring of a finite AW -algebra,” Ann. Math. (2), 65, 224-240 (1957).

    Article  MATH  MathSciNet  Google Scholar 

  3. I. Hafner, “The regular ring and the maximal ring of quotients of a finite Baer -ring,” Mich. Math. J., 21, 153-160 (1974).

    Article  MATH  MathSciNet  Google Scholar 

  4. E. S. Pyle, “The regular ring and the maximal ring of quotients of a finite Baer -ring,” Trans. Am. Math. Soc., 203, 201-213 (1975).

    MATH  MathSciNet  Google Scholar 

  5. S. K. Berberian, “The maximal ring of quotients of a finite von Neumann algebra,” Rocky Mt. J. Math., 12, 149-164 (1982).

    Article  MATH  MathSciNet  Google Scholar 

  6. F. J. Murray and J. von Neumann, “On rings of operators,” Ann. Math. (2), 37, 116-229 (1936).

    Article  Google Scholar 

  7. D. Handelman, “Finite Rickart C -algebras and their properties,” in Studies in Analysis, Adv. Math., Suppl. Stud., 4, G.-C. Rota (ed.), Academic Press, New York (1979), pp. 171-196.

  8. P. Ara and P. Menal, “On regular rings with involution,” Arch. Math., 42, 126-130 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  9. D. Handelman, “Coordinatization applied to finite Baer -rings,” Trans. Am. Math. Soc., 235, 1-34 (1978).

    MATH  MathSciNet  Google Scholar 

  10. S. K. Berberian, Baer Rings and Baer ∗-Rings, Austin (1988); http://www.ma.utexas.edu/mp_arc/c/03/03-181.pdf.

  11. N. Jacobson, Lectures in Abstract Algebra, Vol. 2, Linear Algebra, Van Nostrand, New York (1953).

  12. S. K. Berberian, Lectures in Functional Analysis and Operator Theory, Grad. Texts Math., 15, Springer-Verlag, New York (1974).

  13. J. von Neumann, Continuous Geometry, Princeton Univ. Press, Princeton, NJ (1960).

    MATH  Google Scholar 

  14. K. R. Goodearl, Von Neumann Regular Rings, 2nd ed., Krieger Publ., Malabar, Fl (1991).

    MATH  Google Scholar 

  15. F. Maeda, Kontinuierliche Geometrie, Grundlehren Math. Wiss., 95, Springer-Verlag, Berlin (1958).

  16. L. A. Skornyakov, Complemented Modular Lattices and Regular Rings, Oliver & Boyd, Edinburgh (1964).

    MATH  Google Scholar 

  17. I. Kaplansky, “Any orthocomplemented complete modular lattice is a continuous geometry,” Ann. Math. (2), 67, 524-541 (1955).

    Article  MathSciNet  Google Scholar 

  18. C. C. Chang and H. J. Keisler, Model Theory, North-Holland, Amsterdam (1973).

    MATH  Google Scholar 

  19. D. V. Tyukavkin, “Regular rings with involution,” Vest. Mosk. Univ., Mat., Mekh., No. 3, 29-32 (1984).

  20. F. Micol, “On representability of -regular rings and modular ortholattices,” Ph. D. Thesis, Technische Univ. Darmstadt (2003); http://elib.tu-darmstadt.de/diss/000303/diss.pdf.

  21. L. Rowen, Ring Theory, Vol. 1, Pure Appl. Math., 127, Academic Press, Boston (1988).

  22. S. K. Berberian, Baer ∗-Rings, Grundlehren Math. Wiss. Einzeldarstel., 195, Springer-Verlag, Berlin (1972).

  23. I. Kaplansky, “Projections in Banach algebras,” Ann. Math. (2), 53, 235-249 (1951).

    Article  MATH  MathSciNet  Google Scholar 

  24. E. S. Pyle, “On maximal ring of quotients of a finite Baer -rings,” Ph. D. Thesis, Univ. Texas, Austin (1972).

  25. G. Elek and E. Szabó, “Sofic groups and direct finiteness,” J. Alg., 280, No. 2, 426-434 (2004).

    Article  MATH  Google Scholar 

  26. N. P. Brown and N. Ozawa, C -Algebras and Finite-Dimensional Approximations, Grad. Stud. Math., 88, Am. Math. Soc., Providence, RI (2008).

  27. I. N. Herstein, Rings with Involution, Chicago Lect. Math., Univ. Chicago Press, Chicago (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Semenova.

Additional information

*Supported by the Grants Council (under RF President) for State Aid of Young Doctors of Science (project MD-2587.2010.1), by the J. Mianowski Fund, and by the Fund for Polish Science.

Translated from Algebra i Logika, Vol. 53, No. 4, pp. 466-504, July-August, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herrmann, C., Semenova, M.V. Rings of Quotients of Finite AW -Algebras: Representation and Algebraic Approximation. Algebra Logic 53, 298–322 (2014). https://doi.org/10.1007/s10469-014-9292-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10469-014-9292-7

Keywords

Navigation