Skip to main content
Log in

Topologizability of countable equationally Noetherian algebras

  • Published:
Algebra and Logic Aims and scope

It is proved that an arbitrary equationally Noetherian countable algebra \( \mathcal{A}=\left\langle {A,{L_A}} \right\rangle \) in a countable language is topologizable. Also it is shown that certain of the known statements on topologizability follow as a consequence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Markov, “Absolutely closed subsets,” Mat. Sb., 18 (60), No. 1, 3–28 (1946).

    Google Scholar 

  2. Handbook of Mathematical Logic, Vol. 1, J. Barwise (ed.), North-Holland, Amsterdam (1977).

  3. J. Hanson, An infinite groupoid which admits only trivial topologies, Am. Math. Mon., 74 (1967), 568–569.

    Article  MathSciNet  MATH  Google Scholar 

  4. A. D. Taimanov, “An example of a semigroup which admits only the discrete topology,” Algebra Logika, 12, No. 1, 114–116 (1973).

    Article  MathSciNet  Google Scholar 

  5. V. I. Arnautov, “Examples of infinite rings admitting only the discrete topology,” in Mat. Issl., Vol. 5, No. 3, Stiinca, Kishinev (1970), pp. 182–185.

  6. S. Shelah, “On a Kurosh problem: Jónsson groups, Frattini subgroups and untopologized groups,” Preprint Inst. Math., Hebrew Univ., Jerusalem (1975).

  7. G. Hesse, Zur Topologisierbarkeit von Gruppen, Dissertation, Hannover (1979).

  8. A. Yu. Ol’shanskii, “A note on a countable untopologized group,” Vestnik MGU, No. 3, 103 (1980).

  9. A. A. Klyachko and A. V. Trofimov, “The number of non-solutions of an equation in a group,” J. Group Theory, 8, No. 6, 747–754 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  10. A. D. Taimanov, “On the topologization of countable algebras,” in Tr. Inst. Mat. SO AN SSSR, Nauka, Novosibirsk (1978), pp. 254–275.

  11. Y. G. Zelenyuk, Ultrafilters and Topologies on Groups, de Gruyter Expo. Math., 50, de Gruyter, Berlin (2011).

  12. V. V. Belyaev, “Topologization of countable locally finite groups,” Algebra Logika, 34, No. 6, 613–618 (1995).

    MathSciNet  MATH  Google Scholar 

  13. V. I. Arnautov, “Topologization of countable rings,” Sib. Mat. Zh., 9, No. 6, 1251–1262 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  14. A. D. Taimanov, “Topologization of countable algebras,” Dokl. Akad. Nauk SSSR, 243, No. 2, 284–286 (1978).

    MathSciNet  Google Scholar 

  15. E. Daniyarova, A. Myasnikov, and V. Remeslennikov, “Unification theorems in algebraic geometry,” in Aspects of Infinite Groups, Algebra Discr. Math. (Hackensack), 1, World Sci., Hackensack, NJ (2008), pp. 80–111.

  16. E. Daniyarova, A. Myasnikov, and V. Remeslennikov, “Algebraic geometry over algebraic structures. III: Equationally Noetherian property and compactness,” South. Asian Bull. Math. 35, No. 1, 35–68 (2011).

    MathSciNet  MATH  Google Scholar 

  17. E. Daniyarova, A. Myasnikov, and V. Remeslennikov, “Universal algebraic geometry,” Dokl. Ross. Akad. Nauk, 439, No. 6, 730–732 (1911).

    Google Scholar 

  18. E. Daniyarova, A. Myasnikov, and V. Remeslennikov, “Algebraic geometry over algebraic structures. IV. Equational domains and codomains,” Algebra Logika, 49, No. 6, pp. 715–756 (2010).

    MathSciNet  Google Scholar 

  19. G. Baumslag, A. Myasnikov, and V. Remeslennikov, “Algebraic geometry over groups. I. Algebraic sets and ideal theory,” J. Alg., 219, No. 1, 16–79 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  20. G. Baumslag, A. Myasnikov, and V. Roman’kov, “Two theorems about equationally Noetherian groups,” J. Alg., 194, No. 2, 654–664 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  21. N. S. Romanovskii, “Equational Noetherianness of rigid soluble groups,” Algebra Logika, 48, No. 2, 258–279 (2009).

    Article  MathSciNet  Google Scholar 

  22. Ch. K. Gupta and N. S. Romanovskii, “The property of being equationally Noetherian for some soluble groups,” Algebra Logika, 46, No. 1, 46–59 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  23. A. I. Mal’tsev, “Toward a general theory of algebraic systems,” Mat. Sb., 35, 3–20 (1954).

    MathSciNet  Google Scholar 

  24. R. A. Aleksandryan and E. A. Mirzakhanyan, General Topology [in Russian], Vysshaya Shkola, Moscow (1979).

    Google Scholar 

  25. E. A. Paljutin, D. G. Seese, and A. D. Taimanov, “A remark on the topologization of algebraic structures,” Rev. Roum. Math. Pures Appl., 26, No. 4, 617–618 (1981).

    MathSciNet  Google Scholar 

  26. K.-P. Podewski, “Topologisierung algebraischer Strukturen,” Rev. Roum. Math. Pures Appl., 22, No. 9, 1283–1290 (1977).

    MathSciNet  MATH  Google Scholar 

  27. V. S. Guba, “Equivalence of infinite systems of equations in free groups and semigroups to finite subsystems” Mat. Zametki, 40, No. 3, 321–324 (1986).

    MathSciNet  MATH  Google Scholar 

  28. Z. Sela, “Diophantine geometry over groups. VII: The elementary theory of a hyperbolic group,” Proc. London Math. Soc. (3), 99, No. 1, 217–273 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  29. A. Kertész and T. Szele, “On the existence of non-discrete topologies in infinite Abelian groups,” Publ. Math., Debrecen, 3, Nos. 1/2, 187–189 (1954).

    MATH  Google Scholar 

  30. P. V. Morar and A. N. Shevlyakov, “Algebraic geometry over the additive monoid of natural numbers: Systems of coefficient free equations,” in Combinatorial and Geometric Group Theory. Dortmund and Ottawa–Montreal Conf. (Trends Math.), O. Bogopolski et al. (Eds.), Birkhauser, Basel (2010), pp. 261–278.

  31. A. D. Taimanov, “On the topologization of commutative semigroups,” Mat. Zametki, 17, No. 5, 745–748 (1975).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Kotov.

Additional information

Supported by the Russian Ministry of Education and Science, projects No. 14.V37.21.0359 and 0859.

Translated from Algebra i Logika, Vol. 52, No. 2, pp. 155-171, March-April, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotov, M.V. Topologizability of countable equationally Noetherian algebras. Algebra Logic 52, 105–115 (2013). https://doi.org/10.1007/s10469-013-9226-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10469-013-9226-9

Keywords

Navigation