Skip to main content
Log in

Universal theories for rigid soluble groups

  • Published:
Algebra and Logic Aims and scope

A group is said to be p-rigid, where p is a natural number, if it has a normal series of the form G = G 1 > G 2 > … > G p  > G p+1 = 1, whose quotients G i /G i+1 are Abelian and are torsion free when treated as \( \mathbb{Z} \)[G/G i ]-modules. Examples of rigid groups are free soluble groups. We point out a recursive system of universal axioms distinguishing p-rigid groups in the class of p-soluble groups. It is proved that if F is a free p-soluble group, G is an arbitrary p-rigid group, and W is an iterated wreath product of p infinite cyclic groups, then ∀-theories for these groups satisfy the inclusions \( \mathcal{A}(F) \supseteq \mathcal{A}(G) \supseteq \mathcal{A}(W) \). We construct an ∃-axiom distinguishing among p-rigid groups those that are universally equivalent to W. An arbitrary p-rigid group embeds in a divisible decomposed p-rigid group M = M1,…, α p ). The latter group factors into a semidirect product of Abelian groups A 1 A 2A p , in which case every quotient M i /M i+1 of its rigid series is isomorphic to A i and is a divisible module of rank αi over a ring \( \mathbb{Z} \)[M/M i ]. We specify a recursive system of axioms distinguishing among M-groups those that are Muniversally equivalent to M. As a consequence, it is stated that the universal theory of M with constants in M is decidable. By contrast, the universal theory of W with constants is undecidable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Mal’tsev, “Free solvable groups,” Dokl. Akad. Nauk SSSR, 130, No. 3, 495–498 (1960).

    Google Scholar 

  2. O. Chapuis, “Universal theory of certain solvable groups and bounded Ore group rings,” J. Alg., 176, No. 2, 368–391 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  3. O. Chapuis, “∀-free metabelian groups,” J. Symb. Log., 62, No. 1, 159–174 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  4. O. Chapuis, “On the theories of free solvable groups,” J. Pure Appl. Alg., 131, No. 1, 13–24 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  5. V. Remeslennikov and R. Stohr, “On the quasivariety generated by a non-cyclic free metabelian group,” Alg. Colloq., 11, No. 2, 191–214 (2004).

    MathSciNet  MATH  Google Scholar 

  6. A. Myasnikov and N. Romanovskiy, “Krull dimension of solvable groups,” J. Alg., 324, No. 10, 2814–2831 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  7. Ch. K. Gupta and N. S. Romanovskii, “The property of being equationally Noetherian for some soluble groups,” Algebra Logika, 46, No. 1, 46–59 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  8. N. S. Romanovskii, “Equational Noetherianness of rigid soluble groups,” Algebra Logika, 48, No. 2, 258–279 (2009).

    Article  MathSciNet  Google Scholar 

  9. N. S. Romanovskii, “Divisible rigid groups,” Algebra Logika, 47, No. 6, 762–776 (2008).

    Article  MathSciNet  Google Scholar 

  10. N. S. Romanovskii, “Irreducible algebraic sets over divisible decomposed rigid groups,” Algebra Logika, 48, No. 6, 793–818 (2009).

    Article  MathSciNet  Google Scholar 

  11. N. S. Romanovskii, “Coproducts of rigid groups,” Algebra Logika, 49, No. 6, 803–818 (2010).

    MathSciNet  Google Scholar 

  12. I. N. Herstein, Noncommutative Rings, Carus Math. Monogr., 15, Math. Ass. Am. (1968).

  13. J. Lewin, “A note on zero divisors in group rings,” Proc. Am. Math. Soc., 31, No. 2, 357–359 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  14. P. H. Kropholler, P. A. Linnell, and J. A. Moody, “Applications of a new K-theoretic theorem to soluble group rings,” Proc. Am. Math. Soc., 104, No. 3, 675–684 (1988).

    MathSciNet  MATH  Google Scholar 

  15. G. Baumslag, A. Myasnikov, and V. Remeslennikov, “Algebraic geometry over groups I. Algebraic sets and ideal theory,” J. Alg., 219, No. 1, 16–79 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  16. V. A. Roman’kov, “Equations in free metabelian groups,” Sib. Mat. Zh., 20, No. 3, 671–673 (1979).

    MathSciNet  MATH  Google Scholar 

  17. Yu. V. Matiyasevich, “Being Diophantine for enumerable sets,” Dokl. Akad. Nauk SSSR, 191, No. 2, 279–282 (1970).

    MathSciNet  Google Scholar 

  18. A. Myasnikov and V. N. Remeslennikov, “Algebraic geometry over groups II. Logical foundations,” J. Alg., 234, No. 1, 225–276 (2000).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Myasnikov.

Additional information

Supported by RFBR, project No. 09-01-00099.

Translated from Algebra i Logika, Vol. 50, No. 6, pp. 802-821, November-December, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Myasnikov, A.G., Romanovskii, N.S. Universal theories for rigid soluble groups. Algebra Logic 50, 539–552 (2012). https://doi.org/10.1007/s10469-012-9164-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10469-012-9164-y

Keywords

Navigation