Skip to main content
Log in

The {ie210-01}-property in finite simple groups

  • Published:
Algebra and Logic Aims and scope

Abstract

Let π be some set of primes. A finite group is said to possess the {ie210-02}-property if all of its maximal π-subgroups are conjugate. It is not hard to show that this property is equivalent to satisfaction of the complete analog of Sylow's theorem for Hall π-subgroups of a group. In the paper, we bring to a close an arithmetic description of finite simple groups with the {ie210-03}-property, for any set π of primes. Previously, it was proved that a finite group possesses the {ie210-04}-property iff each composition factor of the group has this property. Therefore, the results obtained mean in fact that the question of whether a given group enjoys the {ie210-05}-property becomes purely arithmetic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Hall, “Theorems like Sylow's,” Proc. London Math. Soc., III. Ser., 6, No. 22, 286–304 (1956).

    Article  MATH  Google Scholar 

  2. P. Hall, “A note on soluble groups,” J. London Math. Soc., 3, 98–105 (1928).

    Article  Google Scholar 

  3. P. Hall, “A characteristic property of soluble groups,” J. London Math. Soc., 12, 198–200 (1937).

    Article  MATH  Google Scholar 

  4. S. A. Chunikhin, “Soluble groups,” Izv. NIIMM Tomsk Univ., 2, 220–223 (1938).

    Google Scholar 

  5. S. A. Chunikhin, “π-Properties of finite groups,” Mat. Sb., 25, No. 3, 321–346 (1949).

    Google Scholar 

  6. S. A. Chunikhin, “Sylow properties of finite groups,” Dokl. Akad. Nauk SSSR, 73, No. 1, 29–32 (1950).

    MATH  Google Scholar 

  7. L. A. Shemetkov, “Toward a theorem of Hall,” Dokl. Akad. Nauk SSSR, 147, No. 2, 321–322 (1962).

    MathSciNet  Google Scholar 

  8. L. A. Shemetkov, “A new D-theorem in the theory of finite groups,” Dokl. Akad. Nauk SSSR, 160, No. 2, 290–293 (1965).

    MathSciNet  Google Scholar 

  9. L. A. Shemetkov, “Sylow properties of finite groups,” Mat. Sb., 76(118), No. 2, 271–287 (1968).

    MathSciNet  Google Scholar 

  10. L. A. Shemetkov, “On Sylow properties of finite groups,” Dokl. Akad. Nauk BSSR, 16, No. 10, 881–883 (1972).

    MATH  MathSciNet  Google Scholar 

  11. L. A. Shemetkov, Formations of Finite Groups [in Russian], Nauka, Moscow (1978).

    MATH  Google Scholar 

  12. L. A. Shemetkov, “Generalizations of Sylow's theorem,” Sib. Mat. Zh., 44, No. 6, 1425–1431 (2003).

    MATH  MathSciNet  Google Scholar 

  13. H. Wielandt, “Entwicklungslinien in der Strukturtheorie der endlichen Gruppen,” Proc. Int. Congr. Math. (Edinburgh, 1958), Cambridge Univ. Press, London (1960), pp. 268–278.

    Google Scholar 

  14. H. Wielandt, “Zum Satz von Sylow,” Math. Z., 60, No. 4, 407–408 (1954).

    Article  MATH  MathSciNet  Google Scholar 

  15. H. Wielandt, “Sur la Stucture des groupes composés,” Séminare Dubriel-Pisot (Algèbre et Théorie des Nombres), No. 17 (1963/64).

  16. H. Wielandt, “Zusammengesetzte Gruppen: Holders Programm heute,” in Finite Groups, Proc. Symp. Pure Math., 37, Am. Math. Soc., Providence, RI (1980), pp. 161–173.

    Google Scholar 

  17. J. G. Thompson, “Hall subgroups of the symmetric groups,” J. Comb. Theory, 1, No. 2, 271–279 (1966).

    Article  MATH  Google Scholar 

  18. S. A. Rusakov, “Analogs of Sylow's theorem on the existence and embedding of subgroups,” Sib. Mat. Zh., 4, No. 5, 325–342 (1963).

    MATH  MathSciNet  Google Scholar 

  19. B. Hartley, “A theorem of Sylow type for finite groups,” Math. Z., 122, No. 4, 223–226 (1971).

    Article  MATH  MathSciNet  Google Scholar 

  20. L. S. Kazarin, “Theorems of Sylow type for finite groups,” in Structural Properties of Algebraic Systems [in Russian], Kabardino-Balkarian State Univ., Nalchik (1981), pp. 42–52.

    Google Scholar 

  21. F. Gross, “Odd order Hall subgroups of GL(n, q) and Sp(2n, q),” Math. Z., 187, No. 2, 185–194 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  22. F. Gross, “On the existence of Hall subgroups,” J. Alg., 98, No. 1, 1–13 (1986).

    Article  MATH  Google Scholar 

  23. F. Gross, “On a conjecture of Philip Hall,” Proc. London Math. Soc., III. Ser., 52, No. 3, 464–494 (1986).

    Article  MATH  Google Scholar 

  24. F. Gross, “Odd order Hall subgroups of the classical linear groups,” Math. Z., 220, No. 3, 317–336 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  25. F. Gross, “Conjugacy of odd order Hall subgroups,” Bull. London Math. Soc., 19, No. 4(79), 311–319 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  26. F. Gross, “Hall subgroups of order not divisible by 3,” Rocky Mountain J. Math., 23, No. 2, 569–591 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  27. V. D. Mazurov, “A Question of L. A. Shemetkov,” Algebra Logika, 31, No. 6, 624–636 (1992).

    MathSciNet  Google Scholar 

  28. D. O. Revin and E. P. Vdovin, “Hall subgroups of finite groups,” in Ischia Group Theory 2004 (Proc. Conf. Honor Marcel Herzog, Naples, Italy, March 31–April 03, 2004), Am. Math. Soc., Providence, RI; Bar-Ilan Univ., Ramat Gan, Contemp. Math., 402, Israel Math. Conf. Proc. (2006), pp. 229–263.

    Google Scholar 

  29. D. O. Revin, “The {ie225-01}-property in a class of finite groups,” Algebra Logika, 41, No. 3, 335–370 (2002).

    MATH  MathSciNet  Google Scholar 

  30. E. P. Vdovin and D. O. Revin, “Hall subgroups of odd order in finite groups,” Algebra Logika, 41, No. 1, 15–56 (2002).

    MATH  MathSciNet  Google Scholar 

  31. D. O. Revin, “The {ie225-02}-property in finite groups for 2 ∉ π,” Trudy Inst. Mat. Mekh. UrO RAN, 13, No. 1, 166–182 (2007).

    MathSciNet  Google Scholar 

  32. D. O. Revin, “The {ie225-03}-property in linear and unitary groups,” Sib. Math. Zh., 49, No. 2, 437–448 (2008).

    MathSciNet  Google Scholar 

  33. V. D. Mazurov and D. O. Revin, “The Hall {ie226-01}-property for finite groups,” Sib. Mat. Zh., 38, No. 1, 125–134 (1997).

    MathSciNet  Google Scholar 

  34. Unsolved Problems in Group Theory, The Kourovka Notebook, 16th edn., Institute of Mathematics SO RAN, Novosibirsk (2006), http://www.math.nsc.ru/~alglog.

  35. D. O. Revin, “Hall π-subgroups of finite Chevalley groups whose characteristic belongs to π,” Mat. Trudy, 2, No. 1, 160–208 (1999).

    MATH  MathSciNet  Google Scholar 

  36. D. Gorenstein, Finite Simple Groups, an Introduction to Their Classification, Plenum, New York (1982).

    MATH  Google Scholar 

  37. A. S. Kondratiev, “Subgroups of finite Chevalley groups,” Usp. Mat. Nauk, 41, No. 1(247), 57–96 (1986).

    Google Scholar 

  38. D. O. Revin, “Superlocals in Symmetric and Alternating Groups,” Algebra Logika, 42, No. 3, 338–365 (2003).

    MATH  MathSciNet  Google Scholar 

  39. J. L. Alperin and P. Fong, “Weights for symmetric and general linear groups,” J. Alg., 131, No. 1, 2–22 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  40. Jianbei An, “Weights for classical groups,” Trans. Am. Math. Soc., 342, No. 1, 1–42 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  41. Jianbei An, “2-Weights for classical groups,” J. Reine Angew. Math., 439, 159–204 (1993).

    MATH  MathSciNet  Google Scholar 

  42. Jianbei An, “2-Weights for general linear groups,” J. Alg., 149, No. 2, 500–527 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  43. Jianbei An, “2-Weights for unitary groups,” Trans. Am. Math. Soc., 339, No. 1, 251–278 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  44. R. W. Carter, Simple Groups of Lie Type, Pure Appl. Math., 28, Wiley, London (1972).

    MATH  Google Scholar 

  45. R. W. Carter, Finite Groups of Lie Type. Conjugacy Classes and Complex Characters, Wiley, New York (1985).

    MATH  Google Scholar 

  46. J. E. Humphreys, Linear Algebraic Groups, Grad. Texts Math., 21, Springer, New York (1975).

    MATH  Google Scholar 

  47. A. V. Borovik, “The structure of finite subgroups of simple algebraic groups,” Algebra Logika, 28, No. 3, 249–279 (1989).

    MathSciNet  Google Scholar 

  48. A. V. Borovik, “Some remarks on the structure of finite subgroups of simple algebraic groups,” in Groups, Combinatorics and Geometry, London Math. Soc. Lect. Note Ser., 165, Cambridge Univ. Press, Cambridge (1992), pp. 287–291.

    Google Scholar 

  49. G. Glauberman, Factorizations in Local Subgroups of Finite Groups, Conf. Board Math. Sci., Reg. Conf. Ser. Math., No. 33, Am. Math. Soc., Providence, RI (1977).

    Google Scholar 

  50. P. Kleidman and M. Liebeck, The Subgroup Structure of the Finite Classical Groups, London Math. Soc. Lect. Note Ser., 129, Cambridge Univ., Cambridge (1990).

    MATH  Google Scholar 

  51. A. M. Cohen, M. W. Liebeck, J. Saxl, and G. M. Seitz, “The local maximal subgroups of exceptional groups of Lie type, finite and algebraic,” Proc. London Math. Soc., Ser. III, 64, No. 1, 21–48 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  52. A. Borel and J. de Siebenthal, “Les-sous-groupes fermés de rang maximum des groupes de Lie clos,” Comment. Math. Helv., 23, 200–221 (1949).

    Article  MATH  MathSciNet  Google Scholar 

  53. E. B. Dynkin, “Semisimple subalgebras of semisimple Lie algebras,” Mat. Sb., 30, No. 2, 349–462 (1952).

    MathSciNet  Google Scholar 

  54. P. B. Kleidman, “The maximal subgroups of the Steinberg triality groups 3 D 4(q) and their automorphism groups,” J. Alg., 115, No. 1, 182–199 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  55. A. V. Borovik, “Jordan subgroups of simple algebraic groups,” Algebra Logika, 28, No. 2, 144–159 (1989).

    MathSciNet  Google Scholar 

  56. J. Conway, R. Curtis, S. Norton, et al., Atlas of Finite Groups, Clarendon, Oxford (1985).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. O. Revin.

Additional information

Supported by RFBR (grant No. 08-01-00322), by the Council for Grants (under RF President) and State Aid of Leading Scientific Schools (grant NSh-344.2008.1), and by SB RAS (Integration project No. 2006.1.2)

__________

Translated from Algebra i Logika, Vol. 47, No. 3, pp. 364–394, May–June, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Revin, D.O. The {ie210-01}-property in finite simple groups. Algebra Logic 47, 210–227 (2008). https://doi.org/10.1007/s10469-008-9010-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10469-008-9010-4

Keywords

Navigation