Skip to main content
Log in

Formality and Lusztig’s Generalized Springer Correspondence

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

We prove a derived equivalence between each block of the derived category of sheaves on the nilpotent cone and the category of differential graded modules over a degeneration of Lusztig’s graded Hecke algebra. Along the way, we construct and study a mixed version of the geometric category. This work can be viewed as giving a derived version of the generalized Springer correspondence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Achar, P., Henderson, A., Juteau, D., Riche, S.: Constructible sheaves on nilpotent cones in rather good characteristic. Selecta Math. 23, 203–243 (2017)

    Article  MathSciNet  Google Scholar 

  2. Achar, P.N., Henderson, A., Riche, S.: Geometric Satake, Springer correspondence, and small representations II. Represent Theory 19, 94–166 (2015)

    Article  MathSciNet  Google Scholar 

  3. Achar, P., Riche, S.: Koszul duality and semisimplicity of Frobenius. Ann. Inst. Fourier 63, 1511–1612 (2013)

    Article  MathSciNet  Google Scholar 

  4. Beilinson, A., Bernstein, J., Deligne, P.: Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy 1981). Astérisque 100, 5–171 (1982). Soc. Math. France

    Google Scholar 

  5. Bernstein, J., Lunts, V.: Equivariant Sheaves and Functors, Lecture Notes in Mathematics. Springer, Berlin (1994)

    Book  Google Scholar 

  6. Borho, W., MacPherson, R.: Représentations des groupes de Weyl et homologie d’intersection pour les variétés nilpotentes. C. R. Acad. Sci. Sér. I Math. 292(15), 707–710 (1981)

    MathSciNet  MATH  Google Scholar 

  7. Borho, W., MacPherson, R.: Partial Resolutions of Nilpotent Varieties, Analysis and Topology on Singular Spaces, II, III (Luminy, 1981), 23–74, Astérisque, vol. 101–102. Soc. Math, France (1983)

    Google Scholar 

  8. Braden, T.: Hyperbolic localization of intersection cohomology. Transform Groups 8, 209–216 (2003)

    Article  MathSciNet  Google Scholar 

  9. Chriss, N., Ginzburg, V.: Representation Theory and Complex Geometry. Birkhäuser Boston, Inc. (1997)

  10. Deligne, P.: La conjecture de Weil II. Publ. Math. IHES. 52, 137–252 (1980)

    Article  MathSciNet  Google Scholar 

  11. Douglass, J., Röhrle, G.: The geometry of generalized Steinberg varieties. Adv. Math. 187(2), 396–416 (2004)

    Article  MathSciNet  Google Scholar 

  12. Douglass, J., Röhrle, G.: Homology of the Steinberg variety and Weyl group coinvariants. Doc. Math. 14, 339–357 (2009)

    MathSciNet  MATH  Google Scholar 

  13. Eberhardt, J.: Springer Motives. arXiv:1812.04796

  14. Geck, M.: An Introduction to Algebraic Geometry and Algebraic Groups. Oxford Graduate Texts in Mathematics, vol. 10. Oxford University Press, Oxford (2003)

    Google Scholar 

  15. Gunningham, S.: A Derived Generalized Springer Decomposition for D-modules on a Reductive Lie Algebra. arXiv:1705.04297

  16. Kato, S.: A homological study of Green polynomials. Ann. Sci. Éc. Norm. Supér. (4) 48(5), 103–1074 (2015)

    MathSciNet  Google Scholar 

  17. Kwon, N.: Borel–Moore homology and K-theory on the Steinberg variety. Michigan Math. J. 58(3), 771–781 (2009)

    Article  MathSciNet  Google Scholar 

  18. Lunts, V: Equivariant sheaves on toric varieties. Compositio Math. 96(1), 63–83 (1995)

    MathSciNet  MATH  Google Scholar 

  19. Lusztig, G.: Coxeter orbits and eigenspaces of Frobenius. Invent. Math. 38(2), 101–159 (1976/77)

    Article  MathSciNet  Google Scholar 

  20. Lusztig, G.: Intersection cohomology complexes on a reductive group. Invent. Math. 75(2), 205–272 (1984)

    Article  MathSciNet  Google Scholar 

  21. Lusztig, G: Character Sheaves I. Adv. Math. 56(3), 193–237 (1985)

    Article  MathSciNet  Google Scholar 

  22. Lusztig, G.: Cuspidal local systems and graded Hecke algebras. I. Inst. Hautes Études Sci. Publ. Math. 75(67), 145–202 (1988)

    Article  MathSciNet  Google Scholar 

  23. Lusztig, G.: Cuspidal local systems and graded Hecke algebras. II, With errata for Part I [Inst. Hautes Études Sci. Publ. Math. No. 67 (1988), 145–202]. CMS Conf. Proc., 16, Representations of groups (Banff, AB, 1994), 217–275, Amer. Math. Soc. Providence RI (1995)

  24. Lusztig, G., Yun, Z.: Z/m-graded Lie algebras and perverse sheaves I. Represent Theory 21, 277–321 (2017)

    Article  MathSciNet  Google Scholar 

  25. Milne, J.S.: Motives over finite fields, in Motives (Seattle, WA, 1991), Proc. Sympos. Pure Math., vol. 55, Part 1. Amer. Math. Soc., Providence (1994)

    Google Scholar 

  26. Rider, L.: Formality for the nilpotent cone and a derived Springer correspondence. Adv. Math. 235, 208–236 (2013)

    Article  MathSciNet  Google Scholar 

  27. Rider, L., Russell, A.: Perverse Sheaves on the Nilpotent Cone and Lusztig’s Generalized Springer Correspondence, in Lie algebras, Lie Superalgebras, Vertex Algebras and Related Topics, 273–292, Proc. Sympos. Pure Math., vol. 92. Amer. Math. Soc., Providence (2016)

    Google Scholar 

  28. Soergel, W.: Langlands’ philosophy and Koszul duality, Algebra— representation theory (Constanta 2000) NATO Sci. Ser. II Math. Phys. Chem., vol. 28, pp 379–414. Kluwer Acad. Publ., Dordrecht (2001)

    Google Scholar 

  29. Soergel, W., Virk, R., Wendt, M.: Equivariant motives and geometric representation theory. (with an appendix by F. Hörmann and M. Wendt), arXiv:1809.05480 (2018)

  30. Spaltenstein, N.: On the Generalized Springer Correspondence for Exceptional Groups, Algebraic Groups and Related Topics (Kyoto/Nagoya, 1983), vol. 6, pp 317–338. Adv. Stud. Pure Math., Amsterdam (1985)

    Google Scholar 

  31. Springer, T.: Linear Algebraic Groups, 2nd edn. Progress in Mathematics, vol. 9. Birkhäuser Boston, Inc, Boston (1998)

    Book  Google Scholar 

  32. Taylor, J.: Generalized Gelfand–Graev representations in small characteristics. Nagoya Math. J. 224(1), 93–167 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are very grateful to George Lusztig for answering questions about his work; in particular, for pointing us to [22, Proposition 4.7]. We also thank Jay Taylor for explaining the proofs in Section 3.1. We also thank Matt Douglass and Pramod Achar for helpful discussions. Finally we thank several anonymous referees for their helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Rider.

Additional information

Presented by: Pramod Achar

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

L.R. was supported by an NSF Postdoctoral Research Fellowship.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rider, L., Russell, A. Formality and Lusztig’s Generalized Springer Correspondence. Algebr Represent Theor 24, 699–714 (2021). https://doi.org/10.1007/s10468-020-09966-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-020-09966-w

Keywords

Mathematics Subject Classificatio (2010)

Navigation