Skip to main content
Log in

Combinatorial Hopf Algebras and Towers of Algebras—Dimension, Quantization and Functorality

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

Bergeron and Li have introduced a set of axioms which guarantee that the Grothendieck groups of a tower of algebras \(\bigoplus_{n\ge0}A_n\) can be a pair of graded dual Hopf algebras. Hivert and Nzeutchap, and independently Lam and Shimozono constructed dual graded graphs from primitive elements in Hopf algebras. In this paper we apply the composition of these constructions to towers of algebras. We show that if a tower \(\bigoplus_{n\ge0}A_n\) gives rise to a pair of graded dual Hopf algebras, then \(\dim(A_n)=r^nn!\) where \(r = \dim(A_1)\). In the case of r = 1 we give a conjectural classification. We then investigate a quantum version of the main theorem. We conclude with some open problems and a categorification of these constructions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aguiar, M., Bergeron, N., Sottile, F.: Combinatorial Hopf algebras and generalized Dehn-Sommerville relations.Compos. Math. 142(1), 1–30 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aguiar, M., Sottile, F.: Structure of the Malvenuto–Reutenauer Hopf algebra of permutations. Adv. Math. 191(2), 225–275 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ariki, S.: On the decomposition numbers of the Hecke algebra of G(n, 1, m). J. Math. Kyoto Univ. 36, 789–808 (1996)

    MathSciNet  MATH  Google Scholar 

  4. Bergeron, N., Hivert, F., Thibon, J.-Y.: The peak algebra and the Hecke–Clifford algebras at q = 0. J. Comb. Theory, Ser. A 107-1, 1–19 (2004)

    Article  MathSciNet  Google Scholar 

  5. Bergeron, N., Lam, T., Li, H.: Combinatorial Hopf algebras and towers of algebras. In: 20th Annual International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2008), Discrete Math. Theor. Comput. Sci. Proc., pp. 52–60. AJ, Assoc. Discrete Math. Theor. Comput. Sci., Nancy, France (2008)

  6. Bergeron, N., Li, H.: Algebraic structures on Grothendieck groups of a tower of algebras. J. Algebra 321, 2068–2084 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brundan, J.: Modular branching rules and the Mullineux map for Hecke algebras of type A. Proc. Lond. Math. Soc. 77, 551–581 (1998)

    Article  MathSciNet  Google Scholar 

  8. Burroughs, J.: Operations in Grothendieck rings and the symmetric group. Can. J. Math. 26, 543–550 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  9. Crane, L., Frenkel, I.: Four-dimensional topological quantum field theory, Hopf categories, and the canonical bases. J. Math. Phys. 35, 5136–5154 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Curtis, C., Reiner, I.: Methods of Representation Theory, vol. I. With Applications to Finite Groups and Orders, Wiley, New York (1990)

    Google Scholar 

  11. Fomin, S.: Duality of graded graphs. J. Algebr. Comb. 3(4), 357–404 (1994)

    Article  MATH  Google Scholar 

  12. Geissinger, L.: Hopf algebras of symmetric functions and class functions. Combinatoire et combinatoire et représentation du groupe symétrique (Actes Table Ronde C.N.R.S., Univ. Louis-Pasteur Strasbourg, Strasbourg, 1976). In: Lecture Notes in Math., vol. 579, pp. 168–181. Springer, Berlin (1977)

    Google Scholar 

  13. Hivert, F., Novelli, J.-C.,Thibon, J.-Y.: Representation theory of the 0-Ariki-Koike-Shoji algebras. Adv. Math. 205(2), 504–548 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hivert, F., Novelli, J.-C.,Thibon, J.-Y.: Commutative combinatorial Hopf algebras. J. Algebr. Comb. 28-1, 65–95 (2008)

    Article  MathSciNet  Google Scholar 

  15. Hivert, F., Nzeutchap, J.: Dual Graded Graphs in Combinatorial Hopf Algebras (in preparation). http://www.fields.utoronto.ca/~janvier/docs/dual_graphs_hopf_algebras.pdf

  16. Joyal, A., Street, R.: Braided tensor categories. Adv. Math. 102(1), 20–78 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. Khovanov, M.: NilCoxeter algebras categorify the Weyl algebra. Commun. Algebra 29(11), 5033–5052 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Krob, D., Thibon, J.-Y.: Noncommutative symmetric functions. IV. Quantum linear groups and Hecke algebras at q = 0. J. Algebr. Comb. 6-4, 339–376 (1997)

    Article  MathSciNet  Google Scholar 

  19. Lam, T.: Quantized dual graded graphs. Electron. J. Comb. 17(1), R88 (2010)

    Google Scholar 

  20. Lam, T., Shimozono, M.: Dual graded graphs for Kac–Moody algebras. Algebra and Number Theory 1, 451–488 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lascoux, A., Leclerc, B., Thibon, J.-Y.: Hecke algebras at roots of unity and canonical bases of quantum affine algebras. Commun. Math. Phys. 181, 205–263 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, H.: Algebraic Structures on Grothendieck Groups of a Tower of Algebras. Ph. D. Thesis, York University, 116 pp. (2007). http://www.math.drexel.edu/~huilan/thesis.pdf

  23. Li, L., Zhang, P.: Twisted Hopf algebras, Ringel–Hall algebras, and Green’s categories. J. Algebra 231, 713–743 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Loday, J.-L.: Generalized bialgebras and triples of operads. Astérisque 320, vi+114 pp. (2008)

  25. Malvenuto, C., Reutenauer, C.: Duality between quasi-symmetric functions and the solomon descent algebra. J. Algebra 177-3, 967–982 (1995)

    Article  MathSciNet  Google Scholar 

  26. Sergeev, A.N.: Tensor algebra of the identity representation as a module over the Lie superalgebras GL(n;m) and Q(n). Math. USSR Sbornik 51, 419–427 (1985)

    Article  MATH  Google Scholar 

  27. Stanley, R.: Differential posets. J. Am. Math. Soc. 1, 919–961 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  28. Thibon, J.-Y., Ung, B.-C.-V.: Quantum quasi-symetric functions and Hecke algebras. J. Phys., A, Math. Gen. 29, 7337–7348 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zelevinsky, A.V.: Representations of finite classical groups. A Hopf algebra approach. In: Lecture Notes in Mathematics, vol. 869. Springer, Berlin (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nantel Bergeron.

Additional information

N. Bergeron is supported in part by CRC and NSERC. T. Lam is partially supported by NSF grants DMS-0600677 and DMS-0652641. H. Li is supported in part by CRC, NSERC and NSF grant DMS-0652641.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergeron, N., Lam, T. & Li, H. Combinatorial Hopf Algebras and Towers of Algebras—Dimension, Quantization and Functorality. Algebr Represent Theor 15, 675–696 (2012). https://doi.org/10.1007/s10468-010-9258-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-010-9258-y

Keywords

Mathematics Subject Classifications (2010)

Navigation